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In this chapter, for any given function, we will find the polynomial of degree n that best approxi-
mates the function around a specific point. More precisely, we aim to decompose any sufficiently
regular function f around a given point a as follows:

f(x) = Tn(x) +Rn(x);

where Tn is a polynomial of degree n and Rn is a function that satisfies limx→a Rn(x) = 0.
Decomposing a function in this way around a point a is known as performing a limited development
(LD) of the function at point a to order n. The polynomial Tn is called the polynomial part of the
LD, and the function Rn is referred to as the remainder of the expansion.

1 Limited developments

1.1 Notations

Let I ⊂ R be an open interval, f : I → R a function, and n ∈ N∗. - If f is differentiable and if the
function f ′ : I → R is also differentiable, we denote f ′′ = (f ′)′ as the second derivative of f . More
generally, for any n ∈ N, we denote

f (0) = f, f (1) = f ′, f (2) = f ′′, . . . , f (n+1) = (f (n))′

.
- f is of class C0 on I if f is continuous on I. We write f ∈ C0(I).
- f is of class Cn on I if f is n-times differentiable on I and f (n) is continuous on I. We write
f ∈ Cn(I).
- f is of class C∞ on I if ∀n ∈ N, f ∈ Cn(I). We write f ∈ C∞(I). Note that for any n ∈ N,
C∞(I) ⊂ Cn(I).
- For any n ∈ N∗, the factorial of n is defined by n! = 1× 2× . . .× (n− 1)×n with the convention
0! = 1.

1.2 Definition and existence

Let I be an open interval and f : I → R a function.
Definition 1. For a ∈ I and n ∈ N, we say that f admits a limited development at point a to order
n if there exist n+1 real constants c0, c1, . . . , cn and a function ε : I → R such that limx→a ε(x) = 0
and, for every x in I,

f(x) = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n︸ ︷︷ ︸
Polynomial part of the LD

+ (x− a)nε(x)︸ ︷︷ ︸
Remainder of the LD

.

Proposition 1. Let I be an open interval and a ∈ I. If f is of class Cn on I, then f admits a
limited development of order n at the point a given by the following formula known as the Taylor-
Young formula:

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + . . .+

f (n)(a)

n!
(x− a)n + (x− a)nε(x),

where limx→a ε(x) = 0.
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Remark 1. The limited development of a function f of order n at the point 0 is written as follows
using the Taylor-Young formula:

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + . . .+

f (n)(0)

n!
xn + xnϵ(x)

where limx→0 ε(x) = 0.

Example 1. Let a ∈ R and n ∈ N∗. Give the limited development at the point a to order n of the
function f(x) = ex.
f(x) = ex, f ′(x) = ex, f ′′(x) = ex, . . . , f (n)(x) = ex.
Evaluating each at x = a, we obtain:
f(a) = ea, f ′(a) = ea, f ′′(a) = ea, . . . , f (n)(a) = ea.
Thus, the limited development of ex at x = a to order n is:

ex = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n + (x− a)nε(x).

= ea + ea(x− a) +
ea

2!
(x− a)2 + · · ·+ ea

n!
(x− a)n + (x− a)nε(x).

= ea
(
1 + (x− a) +

(x− a)2

2!
+ · · ·+ (x− a)n

n!

)
+ (x− a)nε(x),

where limx→0 ε(x) = 0.

Example 2. Give the limited development of f(x) = sin x of order 5 at the point 0.
f(x) = sin x, f ′(x) = cos x, f ′′(x) = − sinx, f (3)(x) = − cosx, f (4)(x) = sin x, f (5)(x) = − cosx
Evaluating each at x = a, we obtain:
f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f (3)(0) = −1, f (4)(0) = 0, f (5)(0) = 0.
Then

sin(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f (3)(0)

3!
x3 +

f (5)(0)

5!
x5 + x6ε(x),

= x− x3

3!
+

x5

5!
+ x6ε(x).

where limx→0 ε(x) = 0.

Notations

1. The term (x − a)nε(x) where ε(x) → 0 as x → a is often denoted as oa((x − a)n), this means
that the function x 7→ oa((x− a)n) satisfies the property:

lim
x→a

oa((x− a)n)

(x− a)n
= 0.

2. The remainder xnε(x) of limited development of a function f at the point 0 of order n can also
be written as xnε(x) = o(xn).

Proposition 2. If a function f has a limited development at a point, then this limited development
is unique.
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Proposition 3. - If f is an even function, then the polynomial part of its limited development at
0 contains only monomials of even degrees (i.e., x0, x2, x4, . . . , x2n, n ∈ N).
- If f is an odd function, then the polynomial part of its limited development at 0 contains only
monomials of odd degrees (i.e., x, x3, x5, . . . , x2n+1, n ∈ N).

Example 3. On considère la fonction f(x) = cos(x), qui est de classe C∞(R). It admits a limited
development at 0 of order 5.
f(x) = cos(x), f ′(x) = − sin(x), f ′′(x) = − cos(x), f ′′′(x) = sin(x), f (4)(x) = cos(x), f (5)(x) =
− sin(x).
Evaluating each at x = 0, we obtain: f(0) = 1, f ′(0) = 0, f ′′(0) = −1, f ′′′(0) = 0, f (4)(0) =
1, f (5)(0) = 0.
Thus, the limited development of cos(x) at x = 0 to order 5 is:

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 +

f (4)(0)

4!
x4 +

f (5)(0)

5!
x5 + o(x6)

By substituting the calculated values :

f(x) = 1 + 0 · x+
−1

2!
x2 + 0 · x3 +

1

4!
x4 + 0 · x5 + o(x6) = 1− x2

2
+

x4

24
+ o(x6)

Since f is an even function, the polynomial part of its Taylor expansion only contains terms of even
degrees, as stated in the proposition.

1.3 The Limited development of Common functions at 0 up to Order
n

• ex = 1 + x+ x2

2!
+ x3

3!
+ · · ·+ xn

n!
+ o(xn)

• ln(1 + x) = x− x2

2
+ x3

3
+ · · ·+ (−1)n+1 xn

n
+ o(xn)

• ∀α ∈ R, (1 + x)α = 1 + αx+ α(α−1)
2!

x2 + · · ·+ α(α−1)...(α−n+1)
n!

xn + o(xn)

• 1
1+x

= 1− x+ x2 − x3 + · · ·+ (−1)nxn + o(xn)

• 1
1−x

= 1 + x+ x2 + x3 + · · ·+ xn + o(xn)

• sin(x) = x− x3

3!
+ x5

5!
+ · · ·+ (−1)n x2n+1

(2n+1)!
+ o(x2n+2)

• cos(x) = 1− x2

2!
+ x4

4!
+ · · ·+ (−1)n x2n

(2n)!
+ o(x2n+1)

• tan(x) = x+ x3

3
+ 2

15
x5 + 17

315
x7 + o(x8)

• cosh(x) = 1 + x2

2!
+ x4

4!
+ · · ·+ x2n

(2n)!
+ o(x2n+1)

• sinh(x) = x+ x3

3!
+ x5

5!
+ · · ·+ x2n+1

(2n+1)!
+ o(x2n+2)

• tanh(x) = x− x3

3
+ 2

15
x5 − 17

315
x7 + o(x8)
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Proposition 4. A function f has a limited development near to a point a if and only if the function
f(x+ a) has a limited development near to a point 0.

Example 4. Calculate the LDn(1) of the function f(x) = ex.
We pose h = x− 1, if x is near to 1, then h is near to 0. Then

ex = ex−1+1

= e1 × ex−1

= e× eh

= e

(
1 + h+

h2

2!
+ ...+

hn

n!
+ hnε(x)

)
= e+

e

1!
(x− 1) +

e

2!
(x− 1)2 + ...+

e

n!
(x− 1)n + o(x− 1)n,

2 Operations on limited developments

2.1 Sum and Product

Definition 2. Let n, p ∈ N∗ with n < p. Truncating a polynomial of degree p to order n means
keeping only the monomials of degrees ≤ n.

Example 5. 1. Truncate the polynomial P (x) = x8 + 2x7 − 3x5 + 2x4 − x3 + x2 + 1 to order 5.
We will denote the obtained polynomial by T5(x).

T5(x) = 1 + x2 − x3 + 2x4 − 3x5

2. Truncate the polynomial (3x+4x2)(1+x+x3) to order 2. We will denote the obtained polynomial
by T2(x). We have:

(3x+ 4x2)(1 + x+ x3) = 3x(1 + x+ x3) + 4x2(1 + x+ x3) = 3x+ 7x2 + 4x3 + 3x4 + 4x5

Then

T2(x) = 3x+ 7x2

Proposition 5. Consider two functions f and g that admit limited development at 0 of order n:

f(x) = c0 + c1x+ · · ·+ cnx
n + xnε1(x) and g(x) = d0 + d1x+ · · ·+ dnx

n + xnε2(x),

with limx→0 ε1(x) = limx→0 ε2(x) = 0.
Then:

• f + g admits a limited development at 0 of order n , given by:
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f(x) + g(x) = (c0 + d0) + (c1 + d1)x+ · · ·+ (cn + dn)x
n + xnε(x),

where limx→0 ε(x) = 0.

• f × g admits a limited development at 0 of order n , given by:

f(x)× g(x) = Tn(x) + xnε(x),

where limx→0 ε(x) = 0, and Tn(x) is the polynomial

(c0 + c1x+ · · ·+ cnx
n)× (d0 + d1x+ · · ·+ dnx

n)

truncated to order n.

Example 6. Calculate the limited development at 0 of order 2 of the function f(x) = ex+ln(1+x).
The functions ex and ln 1 + x are C∞ near 0, so we can write their limited development at 0 of
order 2:

ex = 1 + x+
x2

2!
+ o(x2)

and

ln(1 + x) = x− x2

2
+ o(x2).

then

f(x) =

(
1 + x+

x2

2!
+ o(x2)

)
+

(
x− x2

2
+ o(x2)

)
= 1 + 2x+ o(x2)

Example 7. Calculate the limited development at 0 of order 2 of the function f(x) = cos(x) ×√
(1 + x).

The functions cos(x) and
√
1 + x are C∞ near 0, so we can write their limited development at 0

up to order 2:

cos(x) = 1− x2

2!
+ o(x2) = 1− x2

2
+ o(x2).

and
√
1 + x = (1 + x)

1
2 = 1 +

1

2
x+

1
2
(1
2
− 1)

2!
x2 + o(x2)

then (
1− x2

2
+ o(x2)

)
×
(
1 +

1

2
x− 1

8
x2 + o(x2)

)
= 1 +

1

2
x− 5

8
x2 + o(x2)

By truncating the result at order 2, we obtain

f(x) = 1 +
1

2
x− 1

8
x2 + o(x2)
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2.2 Composition

Proposition 6. We consider two functions f and g that admit a limited development at 0 up to
order n:

f(x) = c0+c1x+· · ·+cnx
n = C(x)+xnε1(x) and g(x) = d0+d1x+· · ·+dnx

n = D(x)+xnε2(x),

with limx→0 ε1(x) = limx→0 ε2(x) = 0.
If g admits a limited development at 0 up to order n and f admits a at g(0) up to order n, then
f ◦ g admits a limited development at 0 up to order n. This expansion is obtained by substituting
the limited development of g into that of f and retaining only terms of degree ≤ n.

Example 8. Let the functions f(x) = ex and g(x) = sin(x). Calculate the LD2(0) of the compo-
sition f(g(x)) = esin(x) .

The LD2(0) of f(x) and g(x) are

f(x) = ex = 1 + x+
x2

2
+ o(x2)

g(x) = x− x3

6
+ o(x3).

Then

f(g(x)) = esin(x) = 1 +

(
x− x3

6
+ o(x3)

)
+

1

2

(
x− x3

6
+ o(x3)

)2

+ o

((
x− x3

6
+ o(x3)

)2
)

By truncating the result at order 2, we obtain

f(g(x)) = 1 + x− x3

6
+

1

2

(
x2 − x4

3
+ o(x4)

)
+ o(x2) = 1 + x+

x2

2
+ o(x2)

2.3 Quotient

Consider two functions f and g that admit a limited development at 0 up to order n:

f(x) = c0 + c1x+ · · ·+ cnx
n + xnε1(x) and g(x) = d0 + d1x+ · · ·+ dnx

n + xnε2(x),

with limx→0 ε1(x) = limx→0 ε2(x) = 0.
To calculate the limited development of the quotient f

g
, we will use the limited development of

1

1 + u
= 1− u+ u2 − u3 + · · ·+ (−1)nun + o(un),

We have three possible cases:
Case 1: If d0 = 1, we set u = d1x+ · · ·+ dnx

n + xnε2(x), and the quotient can be written as

f

g
= f × 1

1 + u
.
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Case 2: If d0 ̸= 0 and d0 ̸= 1, then we reduce to the previous case by rewriting

1

g(x)
=

1

d0
× 1

1 + d1
d0
x+ · · ·+ dn

d0
xn + xn ε2(x)

d0

.

Case 3: If d0 = 0, then we factor by xk (for some k) to reduce to one of the previous cases.

Example 9. We aim to find the LD4(0) of the function f(x) = x
sin(x)

.

The limited development of sin(x) at x = 0 is given by:

sin(x) = x− x3

6
+

x5

120
+ o(x5)

then

f(x) =
x

sin(x)
=

x

x− x3

6
+ x5

120
+ o(x5)

=
1

1− x2

6
+ x4

120
+ o(x4)

Using the expansion for 1
1+u

1

1 + u
= 1− u+ u2 + o(x2)

where

u = −x2

6
+

x4

120
+ o(x4).

We find

f(x) = 1−
(
−x2

6
+

x4

120

)
+

(
−x2

6
+

x4

120

)2

+ o(x4)

By truncating the result at order 4, we obtain

f(x) = 1−
(
−x2

6
+

x4

120

)
+

(
−x2

6

)2

+ o(x4)

f(x) = 1 +
x2

6
+

11x4

120
+ o(x4)

2.4 Integration

Let F be a primitive of f . The function F has a limited development at a up to order n+1, which
is written as:

F (x) = F (a) + c0(x− a) + c1
(x− a)2

2!
+ · · ·+ cn

(x− a)n+1

(n+ 1)!
+ (x− a)n+1θ(x)

where limx→a θ(x) = 0.
This means that we integrate the polynomial part term by term to obtain the Taylor expansion of
F (x), starting from the constant F (a).
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Example 10. Let f(x) = arctan(x) be defined on R. Let’s find its limited development at 0.
We have f ′(x) = 1

1+x2 , the LDn(0) of
1

1+x2 at 0 is:

f ′(x) =
1

1 + x2
= 1− x2 + x4 + ...+ (−1)nx2n + o(x2n)

Now, integrate f ′(x) to find f(x):

f(x) =

∫ (
1− x2 + x4 + ...+ (−1)nx2n + o(x2n)

)
dx

we get:

f(x) = x− x3

3
+

x5

5
− · · ·+ (−1)n

x2n+1

2n+ 1
+ o(x2n+1)

.

3 Applications of Limit Developments

3.1 Limit Calculation

We seek to calculate limx→a f(x). If f admits a limited development at a to the order n, then

f(x) = c0 + c1(x− a) + . . .+ cn(x− a)n + (x− a)nε(x)

and therefore,

lim
x→a

f(x) = lim
x→a

(c0 + c1(x− a) + . . .+ cn(x− a)n + (x− a)nε(x)) .

Example 11. Calculate limx→0
sin(x)−x

x(cos(x)−1)
.

We can see that this limit is an indeterminate form. We know the DL3(0) of sin(x) and cos(x) in
0

sin(x)− x = x3

3!
+ x3ε(x),

x(cos(x)− 1) = x3

2!
+ x3ε(x),

by substituting we have

limx→0
sin(x)−x

x(cos(x)−1)
= limx→0

x3

3!
x3

2!

= limx→0

1
6
1
2

= 1
3
.
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3.2 Continuity and Differentiability from a limited development

Let f(x) be a function defined on an interval I, except at x = 0. If f admits a first-order limited
development at x = 0 , meaning f(x) = a0 + a1x+ xϵ(x); then the following results hold:
1. Extension by Continuity: we can extend the function to be continuous at x = 0 by defining:
f(0) = a0
2. Differentiability at x = 0: This extension guarantees that f(x) is differentiable at x = 0,
with f ′(0) = a1
3. Equation of the Tangent Line: The equation of the tangent line to f(x) at x = 0 is:
y = a0 + a1x
Example 12. Let f(x) = ex−1

x
with ex = 1 + x+ x2

2!
+ o(x2), then

f(x) =
x+x2

2
+x2ε(x)

x
= 1 + x

2
+ x2ε(x)

1. We can extend f by continuity at x = 0 by posing f(0) = 1.
2. The function is differentiable at x = 0 with f ′(0) = 1

2

3. The equation of the tangent line to f(x) at x = 0 is y = 1 + x
2
.
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