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In this chapter, for any given function, we will find the polynomial of degree n that best approxi-
mates the function around a specific point. More precisely, we aim to decompose any sufficiently
regular function f around a given point a as follows:

f(z) =T, (z) + Ru(z);

where T, is a polynomial of degree n and R, is a function that satisfies lim,_,, R, (z) = 0.
Decomposing a function in this way around a point a is known as performing a limited development
(LD) of the function at point a to order n. The polynomial 7;, is called the polynomial part of the
LD, and the function R, is referred to as the remainder of the expansion.

1 Limited developments

1.1 Notations

Let I C R be an open interval, f : I — R a function, and n € N*. - If f is differentiable and if the
function f': I — R is also differentiable, we denote f” = (f’)’ as the second derivative of f. More
generally, for any n € N, we denote

f(O) = f(l) _ f/’f(Q) =f" .. .,f("H) = (f(n))/

- fis of class C° on [ if f is continuous on I. We write f € C°(1).

- fis of class C™ on I if f is n-times differentiable on I and f™ is continuous on I. We write
fecm().

- fisof class C* on [ if Vn € N, f € C™(I). We write f € C°(I). Note that for any n € N,
Cc>(1) c c™(I).

- For any n € N*| the factorial of n is defined by n! =1 x 2 x ... x (n—1) X n with the convention
ol =1.

1.2 Definition and existence

Let I be an open interval and f : I — R a function.

Definition 1. Fora € I andn € N, we say that f admits a limited development at point a to order
n if there exist n+1 real constants cy, ¢y, ..., ¢, and a function e : I — R such that lim,_,, e(x) =0
and, for every x in I,

f(:z:):go+cl(x—a)+02(x—a)2+---+cn(x—a)7i + (z—a)"(x)
—_——

~
Polynomial part of the LD Remainder of the LD

Proposition 1. Let I be an open interval and a € I. If f is of class C™ on I, then f admits a
limited development of order n at the point a given by the following formula known as the Taylor-
Young formula:

fo) = f(@) + e —a) + 00 —a

where lim,_,, (x) = 0.



Remark 1. The limited development of a function f of order n at the point 0 is written as follows
using the Taylor-Young formula:
an (n) 0
f(x) = f(0)+ f'(0)x + f2—<')x2 +..F fn—'()x" + 2"€e(x)

where lim,_,qe(z) = 0.

Example 1. Let a € R and n € N*. Give the limited development at the point a to order n of the
function f(x) = e".

flx)y=¢* flx)=¢ [f'(x)=¢ ..., fO(z)=¢"
Fvaluating each at x = a, we obtain:
fla)=¢* f'la)=ce€* f'(a)=¢ ..., fM(a)=e"
Thus, the limited development of e* at x = a to order n is:
" (n)
o = fa) + P —a)+ T —ap o Ty o ayeg
—e“+e“(x—a)+;(x—a)2+~~'+;—C:(J:—a)"—i-(x—a)”a(x)
=e’ (1+(x—a)+ (m;!a)Q +--~+w> + (z —a)"e(x),

where lim,_,oe(z) = 0.

Example 2. Give the limited development of f(x) = sinx of order 5 at the point 0.
f(z) = sinz, f'(r) = cosz, f'(x) = —sinz, fO(x) = —cosz, fW(x) = sinz, fO(2) = —cosx
FEvaluating each at © = a, we obtain:

f(O) = O,f/(O) = 17f”<0> = O?f(3)<0> = _17 f(4)(0> = 07f(5)(0) =0.

Then
SiIl(:L‘) _ f(()) + f/(O)ZL' + f//(o)xj + f(g)(o)x?) + f(5)(0) x5 + .ZUGE(Jf),
1 2l 31 51
x> b
=T — y—l—g—f-l‘ﬁé(l’)

where lim,_,oe(z) = 0.

Notations

1. The term (z — a)"e(z) where e(z) — 0 as x — a is often denoted as o0,((z — a)"), this means
that the function x +— o,((z — a)™) satisfies the property:

. 04((z —a)")
alclig (x —a)?

= 0.
2. The remainder z™e(x) of limited development of a function f at the point 0 of order n can also
be written as x™e(x) = o(z").

Proposition 2. If a function f has a limited development at a point, then this limited development
1S unique.



Proposition 3. - If f is an even function, then the polynomial part of its limited development at
2n
,x" n € N).

0

0 contains only monomials of even degrees (i.e., 2°, 2%, 2%,
- If f is an odd function, then the polynomial part of its limited development at 0 contains only
monomials of odd degrees (i.e., x,z3 2%, ... 2> n e N).

Example 3. On considére la fonction f(x) = cos(x), qui est de classe C*°(R). It admits a limited

development at 0 of order 5.

[(x) = cos(x), [f(x) = —sina), ["(x) = — cos(x),

f"(x) = sin(z),

—sin(x).

Evaluating each at x = 0, we obtain: f(0) =1, f'(0)=0, f"(0)=-1, f"(0)=0,

1, fO(0)=o.

Thus, the limited development of cos(x) at x =0 to order 5 is:
an "(Q (4) 0 (5) 0

f(x) = f(0)+ f(0)x + f—()x2 + I )x3 + /oA )x4 + f—()x5 + o(x

2! 3! 4 5!

By substituting the calculated values :

F@) = 14004+ 22?4007+ Lt 407 b = 1- L 4 T o
= T+ z? T 2° + o(w 5ty tol

’)

")

FO (@) = cose),  O(x) =

F9(0) =

Since fis an even function, the polynomial part of its Taylor expansion only contains terms of even

degrees, as stated in the proposition.

1.3 The Limited development of Common functions at 0 up to Order

n
z2 z3 " n
o €x:1+ﬂf+§+§+"'+m+0($)

o ln(l—i—x):x—%—i—%jL---—i—( "L 4 o(x

e Vo eR, (1+ux)* —1+ax+a( D2 44

e et et (1 o)

o L =ltz+a?+2®+ - +1"+o0(z")

")

a(a—1)...

e sin(x) :x—§+§+...+(_1>n 12"“' + o(z?+2)

(2n+1)!

$2 aj4 n IQn n
o cos(z) =1— G+ 5+ + (-1)"&5 + o(2201)

o tan(z) =z + % + 2% + 2La” + o(a®)
e cosh(x) :1+§+%+”'+%+0(I2M1)
2n+1

. 23 5 .
o sinh(z) =z + G + 5+ o+ gy + (@)

e tanh(z )—$—%3+—x5—%m7+0( 8)

(a—n+1)
n!

" + o(x"



Proposition 4. A function f has a limited development near to a point a if and only if the function
f(z + a) has a limited development near to a point 0.

Example 4. Calculate the LD,,(1) of the function f(x) = e”.
We pose h = x — 1, if x is near to 1, then h is near to 0. Then

e:r; _ e:c—1+1

=e! x !

=ex el

h? h" n
:6(1+h+§+...+m+h E(x))

e e e " "
:e—l—ﬁ@—1)—|—§(x—1)2—|—...+m(x—1) +o(x—1)",

2 Operations on limited developments

2.1 Sum and Product

Definition 2. Let n,p € N* with n < p. Truncating a polynomial of degree p to order n means
keeping only the monomials of degrees < n.

Example 5. 1. Truncate the polynomial P(x) = x® + 227 — 325 + 22* — 23 + 22 + 1 to order 5.
We will denote the obtained polynomial by Ts(z).

Ts(z) = 1+ 2% — 2° 4 22* — 32°
2. Truncate the polynomial (3z+4x2)(1+x+2?) to order 2. We will denote the obtained polynomial
by To(z). We have:
(Br +42H)(1 + 2 +2°) =32(1 + 2 + 2°) + 42°(1 + 7 + 2°) = 32 + T2® + 42® + 32" + 42°

Then

Ty(x) = 31 + 72

Proposition 5. Consider two functions f and g that admit limited development at 0 of order n:
flx)=co+cx+ -+ +z2"e(x) and g(z)=do+ dix+ -+ dyz" + 2" (),

with lim,_,¢ &1 () = lim,_,oe9(z) = 0.
Then:

e [+ g admits a limited development at 0 of order n , given by:



f@)+g(z)=(co+do)+ (c1 +di)x+ -+ (cn + dp)x" + z"e(x),

where lim,_,oe(z) = 0.
o f X g admits a limited development at 0 of order n , given by:

fx) x g(x) = Tn(x) + 2" (),

where lim,_,oe(z) = 0, and T,,(z) is the polynomial
(co+crz+ -+ cpx™) X (do+ dyx + -+ - + dpa™)
truncated to order n.

Example 6. Calculate the limited development at 0 of order 2 of the function f(x) = e*+In(1+x).
The functions €* and In1+ x are C* near 0, so we can write their limited development at 0 of

order 2: )

x __ I‘_ 2
e —1—1—1’—1—2! + o(z?)

and
2

In(l +z) =z — % + o(z?).

then
2

f(z) = <1 ++ 2—7 —|—0(x2)) + <a:— % —|—0(:1c2)) =1+2z+o(2?)

Example 7. Calculate the limited development at 0 of order 2 of the function f(x) = cos(z) X

V(1 +2).
The functions cos(z) and \/1+ x are C™ near 0, so we can write their limited development at 0
up to order 2:

cos(x) =1— % +o(z?) =1— % + o(z?)
and
1 111
\/1+1‘:(1+$)§:1+§$+222' 2* + o(z?)
then ) . . . .
<1 - % + 0(x2)> X (1 + 5%~ §x2 + 0(1:2)) =1+ 3%~ 512 + o(z?)

By truncating the result at order 2, we obtain

flx)=1+ %x - %xQ + o(x?)



2.2 Composition

Proposition 6. We consider two functions f and g that admit a limited development at 0 up to
order n:

f(z) =cotcz+-+epx” =C(x)+2"e1(x) and g(x) = do+diz+---+d,2" = D(x)+2"es(x),

with lim, o &1 (x) = lim, o e2(x) = 0.

If g admits a limited development at 0 up to order n and f admits a at g(0) up to order n, then
f og admits a limited development at 0 up to order n. This expansion is obtained by substituting
the limited development of g into that of f and retaining only terms of degree < n.

Example 8. Let the functions f(z) = €® and g(x) = sin(x). Calculate the LDy(0) of the compo-
sition f(g(x)) = e(®)

The LD5(0) of f(x) and g(z) are

2

f(af)=6I:1+x+%+o(:v2)

Then

Flg(n) = @) =1 + <$ _ %3 n 0(;,;3)) + % (:{; - %3 + 0(:1:3)>2 +o ((:c — %3 + o(:c3)>2>

By truncating the result at order 2, we obtain

1, ! A N z? )
f(g(x))=1+x—g+§(x—g—i—o(x))—l—o(x)—l—i-xﬁL?—i—o(m)

2.3 Quotient

Consider two functions f and g that admit a limited development at 0 up to order n:
flx)=co+tcx+ - +ca”+a"e(xr) and g(x) =do+ dix + -+ + dpa™ + 2"es(x),

with lim, o1 (x) = lim,_,¢e2(x) = 0.
To calculate the limited development of the quotient 5, we will use the limited development of

1
1+u

=l—u+u®—u®+ -+ (=D"u" + o(u"),

We have three possible cases:
Case 1: If dy = 1, we set u = dyx + - - - + d,,a™ + x™e5(x), and the quotient can be written as

1
i:fx .
g 1+u




Case 2: If dy # 0 and dy # 1, then we reduce to the previous case by rewriting

1 1 1

9@) o Ty g gy g

Case 3: If dy = 0, then we factor by z* (for some k) to reduce to one of the previous cases.

Example 9. We aim to find the LD4(0) of the function f(z) = ==

sin(z) *
The limited development of sin(x) at x = 0 is given by:

, 3 b 5
sin(z) —ZE—E—{—EO—{—O(!T )

then

x T 1

= @ P ErE o) I-Z 1 o)

Using the expansion for ——

T+u
Lo 1 —u+u® 4 o(z?)
14w
where
2t
u = —E—%m—l—o(x‘*)
We find

2.4 Integration

Let I be a primitive of f. The function F has a limited development at a up to order n+ 1, which
is written as:

Fla) = F(a) + eofa—a) 4+ o E= L g, B

5 —(n .y + (z — a)" " o(x)

where lim,_,, 8(x) = 0.
This means that we integrate the polynomial part term by term to obtain the Taylor expansion of
F(z), starting from the constant F'(a).



Example 10. Let f(x) = arctan(x) be defined on R. Let’s find its limited development at 0.
We have f'(x) = 5352, the LDy(0) of 7 at 0 is:
1
/ —
Fiz) = 1+ 22

Now, integrate f'(x) to find f(x):

=1—-2*+ 2"+ ..+ (=1)"2* + o(2™)

flz) = / (1—2®+2*+ ...+ (=1)"2* + o(z®)) dz

we get:
3 5 2n+1

f(x):x—x_+m__+(_1>n +O(Z‘2n+1)

3 Applications of Limit Developments

3.1 Limit Calculation

We seek to calculate lim, ., f(x). If f admits a limited development at a to the order n, then
f@x)=co+ca(z—a)+...+ (v —a)" + (z —a)e(z)
and therefore,

lim f(z) = lim (co + c1(z —a) + ... + cp(z —a)" + (x — a)"e(x)) .

r—a r—a

sin(z)—x
z(cos(z)—1)*
We can see that this limit is an indeterminate form. We know the DL3(0) of sin(x) and cos(x) in

0

Example 11. Calculate lim,_,

by substituting we have

sin(z)—xz

1
lim, 0 P2 = lim, 0 o = lim,_,0 & = 1
=0 z(cos(z)—1) =0 33 =01 3°

2



3.2 Continuity and Differentiability from a limited development

Let f(z) be a function defined on an interval I, except at « = 0. If f admits a first-order limited
development at x = 0 , meaning f(z) = ap + a1x + xe(x); then the following results hold:

1. Extension by Continuity: we can extend the function to be continuous at = 0 by defining;:
f(0) =aq

2. Differentiability at x = 0: This extension guarantees that f(z) is differentiable at x = 0,
with f'(0) = ay

3. Equation of the Tangent Line: The equation of the tangent line to f(z) at = 0 is:
Yy=ao+nx

Example 12. Let f(z) = <2 with ¢* = 1+ x + % + o(z?), then

2
a4 5 +aPe(z) x

x

1. We can extend f by continuity at x = 0 by posing f(0) = 1.
2. The function is differentiable at © =0 with f'(0) = 3
3. The equation of the tangent line to f(z) at x = 0isy =1+

N8

10
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