$\label{eq:Course of Analysis I} Chapter \ V : LIMITED \ DEVELOPMENT$

Academic Year 2025-2026

Contents

1		nited developments	
	1.1	Notations	
	1.2	Definition and existence	
	1.3	The Limited development of Common functions at 0 up to Order n $\ \ldots \ \ldots \ \ldots$	
2	Ope	erations on limited developments	
	2.1	Sum and Product	
	2.2	Composition	
	2.3	Quotient	
	2.4	Integration	
3	App	Applications of Limit Developments	
	3.1	Limit Calculation	
	3.2	Continuity and Differentiability from a limited development	

In this chapter, for any given function, we will find the polynomial of degree n that best approximates the function around a specific point. More precisely, we aim to decompose any sufficiently regular function f around a given point a as follows:

$$f(x) = T_n(x) + R_n(x);$$

where T_n is a polynomial of degree n and R_n is a function that satisfies $\lim_{x\to a} R_n(x) = 0$. Decomposing a function in this way around a point a is known as performing a limited development (LD) of the function at point a to order n. The polynomial T_n is called the polynomial part of the LD, and the function R_n is referred to as the remainder of the expansion.

1 Limited developments

1.1 Notations

Let $I \subset \mathbb{R}$ be an open interval, $f: I \to \mathbb{R}$ a function, and $n \in \mathbb{N}^*$. - If f is differentiable and if the function $f': I \to \mathbb{R}$ is also differentiable, we denote f'' = (f')' as the second derivative of f. More generally, for any $n \in \mathbb{N}$, we denote

$$f^{(0)} = f, f^{(1)} = f', f^{(2)} = f'', \dots, f^{(n+1)} = (f^{(n)})'$$

- f is of class C^0 on I if f is continuous on I. We write $f \in C^0(I)$.

- f is of class C^n on I if f is n-times differentiable on I and $f^{(n)}$ is continuous on I. We write $f \in C^n(I)$.

- f is of class C^{∞} on I if $\forall n \in \mathbb{N}, f \in C^n(I)$. We write $f \in C^{\infty}(I)$. Note that for any $n \in \mathbb{N}$, $C^{\infty}(I) \subset C^n(I)$.

- For any $n \in \mathbb{N}^*$, the factorial of n is defined by $n! = 1 \times 2 \times ... \times (n-1) \times n$ with the convention 0! = 1.

1.2 Definition and existence

Let I be an open interval and $f: I \to \mathbb{R}$ a function.

Definition 1. For $a \in I$ and $n \in \mathbb{N}$, we say that f admits a limited development at point a to order n if there exist n+1 real constants c_0, c_1, \ldots, c_n and a function $\varepsilon : I \to \mathbb{R}$ such that $\lim_{x\to a} \varepsilon(x) = 0$ and, for every x in I,

$$f(x) = \underbrace{c_0 + c_1(x-a) + c_2(x-a)^2 + \dots + c_n(x-a)^n}_{Polynomial\ part\ of\ the\ LD} + \underbrace{(x-a)^n \varepsilon(x)}_{Remainder\ of\ the\ LD}.$$

Proposition 1. Let I be an open interval and $a \in I$. If f is of class C^n on I, then f admits a limited development of order n at the point a given by the following formula known as the Taylor-Young formula:

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + (x - a)^n \varepsilon(x),$$

where $\lim_{x\to a} \varepsilon(x) = 0$.

Remark 1. The limited development of a function f of order n at the point 0 is written as follows using the Taylor-Young formula:

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \ldots + \frac{f^{(n)}(0)}{n!}x^n + x^n\epsilon(x)$$

where $\lim_{x\to 0} \varepsilon(x) = 0$.

Example 1. Let $a \in \mathbb{R}$ and $n \in \mathbb{N}^*$. Give the limited development at the point a to order n of the function $f(x) = e^x$.

$$f(x) = e^x$$
, $f'(x) = e^x$, $f''(x) = e^x$, ..., $f^{(n)}(x) = e^x$.

Evaluating each at x = a, we obtain:

$$f(a) = e^a$$
, $f'(a) = e^a$, $f''(a) = e^a$, ..., $f^{(n)}(a) = e^a$.

Thus, the limited development of e^x at x = a to order n is:

$$e^{x} = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^{2} + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^{n} + (x - a)^{n}\varepsilon(x).$$

$$= e^{a} + e^{a}(x - a) + \frac{e^{a}}{2!}(x - a)^{2} + \dots + \frac{e^{a}}{n!}(x - a)^{n} + (x - a)^{n}\varepsilon(x).$$

$$= e^{a} \left(1 + (x - a) + \frac{(x - a)^{2}}{2!} + \dots + \frac{(x - a)^{n}}{n!}\right) + (x - a)^{n}\varepsilon(x),$$

where $\lim_{x\to 0} \varepsilon(x) = 0$.

Example 2. Give the limited development of $f(x) = \sin x$ of order 5 at the point 0. $f(x) = \sin x$, $f'(x) = \cos x$, $f''(x) = -\sin x$, $f^{(3)}(x) = -\cos x$, $f^{(4)}(x) = \sin x$, $f^{(5)}(x) = -\cos x$ Evaluating each at x = a, we obtain:

$$f(0) = 0, f'(0) = 1, f''(0) = 0, f^{(3)}(0) = -1, f^{(4)}(0) = 0, f^{(5)}(0) = 0.$$

Then

$$\sin(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \frac{f^{(5)}(0)}{5!}x^5 + x^6\varepsilon(x),$$

$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^6\varepsilon(x).$$

where $\lim_{x\to 0} \varepsilon(x) = 0$.

Notations

1. The term $(x-a)^n \varepsilon(x)$ where $\varepsilon(x) \to 0$ as $x \to a$ is often denoted as $o_a((x-a)^n)$, this means that the function $x \mapsto o_a((x-a)^n)$ satisfies the property:

$$\lim_{x \to a} \frac{o_a((x-a)^n)}{(x-a)^n} = 0.$$

2. The remainder $x^n \varepsilon(x)$ of limited development of a function f at the point 0 of order n can also be written as $x^n \varepsilon(x) = o(x^n)$.

Proposition 2. If a function f has a limited development at a point, then this limited development is unique.

Proposition 3. - If f is an even function, then the polynomial part of its limited development at 0 contains only monomials of even degrees (i.e., $x^0, x^2, x^4, \ldots, x^{2n}, n \in \mathbb{N}$).

- If f is an odd function, then the polynomial part of its limited development at 0 contains only monomials of odd degrees (i.e., $x, x^3, x^5, \ldots, x^{2n+1}, n \in \mathbb{N}$).

Example 3. On considère la fonction $f(x) = \cos(x)$, qui est de classe $C^{\infty}(\mathbb{R})$. It admits a limited development at 0 of order 5.

$$f(x) = \cos(x), \quad f'(x) = -\sin(x), \quad f''(x) = -\cos(x), \quad f'''(x) = \sin(x), \quad f^{(4)}(x) = \cos(x), \quad f^{(5)}(x) = -\sin(x).$$

Evaluating each at x = 0, we obtain: f(0) = 1, f'(0) = 0, f''(0) = -1, f'''(0) = 0, $f^{(4)}(0) = 1$, $f^{(5)}(0) = 0$.

Thus, the limited development of cos(x) at x = 0 to order 5 is:

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \frac{f^{(4)}(0)}{4!}x^4 + \frac{f^{(5)}(0)}{5!}x^5 + o(x^6)$$

By substituting the calculated values:

$$f(x) = 1 + 0 \cdot x + \frac{-1}{2!}x^2 + 0 \cdot x^3 + \frac{1}{4!}x^4 + 0 \cdot x^5 + o(x^6) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^6)$$

Since f is an even function, the polynomial part of its Taylor expansion only contains terms of even degrees, as stated in the proposition.

1.3 The Limited development of Common functions at 0 up to Order n

•
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n)$$

•
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n+1} \frac{x^n}{n} + o(x^n)$$

•
$$\forall \alpha \in \mathbb{R}$$
, $(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}x^n + o(x^n)$

•
$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + o(x^n)$$

•
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + o(x^n)$$

•
$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

•
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

•
$$\tan(x) = x + \frac{x^3}{3} + \frac{2}{15}x^5 + \frac{17}{315}x^7 + o(x^8)$$

•
$$\cosh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

•
$$\sinh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

•
$$\tanh(x) = x - \frac{x^3}{3} + \frac{2}{15}x^5 - \frac{17}{315}x^7 + o(x^8)$$

Proposition 4. A function f has a limited development near to a point a if and only if the function f(x + a) has a limited development near to a point a.

Example 4. Calculate the $LD_n(1)$ of the function $f(x) = e^x$. We pose h = x - 1, if x is near to 1, then h is near to 0. Then

$$\begin{split} e^x &= e^{x-1+1} \\ &= e^1 \times e^{x-1} \\ &= e \times e^h \\ &= e \left(1 + h + \frac{h^2}{2!} + \dots + \frac{h^n}{n!} + h^n \varepsilon(x) \right) \\ &= e + \frac{e}{1!} (x-1) + \frac{e}{2!} (x-1)^2 + \dots + \frac{e}{n!} (x-1)^n + o(x-1)^n, \end{split}$$

2 Operations on limited developments

2.1 Sum and Product

Definition 2. Let $n, p \in N^*$ with n < p. Truncating a polynomial of degree p to order n means keeping only the monomials of degrees $\leq n$.

Example 5. 1. Truncate the polynomial $P(x) = x^8 + 2x^7 - 3x^5 + 2x^4 - x^3 + x^2 + 1$ to order 5. We will denote the obtained polynomial by $T_5(x)$.

$$T_5(x) = 1 + x^2 - x^3 + 2x^4 - 3x^5$$

2. Truncate the polynomial $(3x+4x^2)(1+x+x^3)$ to order 2. We will denote the obtained polynomial by $T_2(x)$. We have:

$$(3x + 4x^{2})(1 + x + x^{3}) = 3x(1 + x + x^{3}) + 4x^{2}(1 + x + x^{3}) = 3x + 7x^{2} + 4x^{3} + 3x^{4} + 4x^{5}$$

Then

$$T_2(x) = 3x + 7x^2$$

Proposition 5. Consider two functions f and g that admit limited development at θ of order n:

$$f(x) = c_0 + c_1 x + \dots + c_n x^n + x^n \varepsilon_1(x)$$
 and $g(x) = d_0 + d_1 x + \dots + d_n x^n + x^n \varepsilon_2(x)$,

with $\lim_{x\to 0} \varepsilon_1(x) = \lim_{x\to 0} \varepsilon_2(x) = 0$. Then:

• f + g admits a limited development at 0 of order n, given by:

$$f(x) + g(x) = (c_0 + d_0) + (c_1 + d_1)x + \dots + (c_n + d_n)x^n + x^n \varepsilon(x),$$

where $\lim_{x\to 0} \varepsilon(x) = 0$.

• $f \times g$ admits a limited development at 0 of order n, given by:

$$f(x) \times g(x) = T_n(x) + x^n \varepsilon(x),$$

where $\lim_{x\to 0} \varepsilon(x) = 0$, and $T_n(x)$ is the polynomial

$$(c_0 + c_1 x + \dots + c_n x^n) \times (d_0 + d_1 x + \dots + d_n x^n)$$

truncated to order n.

Example 6. Calculate the limited development at 0 of order 2 of the function $f(x) = e^x + \ln(1+x)$. The functions e^x and $\ln 1 + x$ are C^{∞} near 0, so we can write their limited development at 0 of order 2:

$$e^x = 1 + x + \frac{x^2}{2!} + o(x^2)$$

and

$$\ln(1+x) = x - \frac{x^2}{2} + o(x^2).$$

then

$$f(x) = \left(1 + x + \frac{x^2}{2!} + o(x^2)\right) + \left(x - \frac{x^2}{2} + o(x^2)\right) = 1 + 2x + o(x^2)$$

Example 7. Calculate the limited development at 0 of order 2 of the function $f(x) = \cos(x) \times \sqrt{(1+x)}$.

The functions $\cos(x)$ and $\sqrt{1+x}$ are C^{∞} near 0, so we can write their limited development at 0 up to order 2:

$$\cos(x) = 1 - \frac{x^2}{2!} + o(x^2) = 1 - \frac{x^2}{2} + o(x^2).$$

and

$$\sqrt{1+x} = (1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}x^2 + o(x^2)$$

then

$$\left(1 - \frac{x^2}{2} + o(x^2)\right) \times \left(1 + \frac{1}{2}x - \frac{1}{8}x^2 + o(x^2)\right) = 1 + \frac{1}{2}x - \frac{5}{8}x^2 + o(x^2)$$

By truncating the result at order 2, we obtain

$$f(x) = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + o(x^2)$$

2.2 Composition

Proposition 6. We consider two functions f and g that admit a limited development at 0 up to order n:

$$f(x) = c_0 + c_1 x + \dots + c_n x^n = C(x) + x^n \varepsilon_1(x)$$
 and $q(x) = d_0 + d_1 x + \dots + d_n x^n = D(x) + x^n \varepsilon_2(x)$,

with $\lim_{x\to 0} \varepsilon_1(x) = \lim_{x\to 0} \varepsilon_2(x) = 0$.

If g admits a limited development at 0 up to order n and f admits a at g(0) up to order n, then $f \circ g$ admits a limited development at 0 up to order n. This expansion is obtained by substituting the limited development of g into that of f and retaining only terms of degree $\leq n$.

Example 8. Let the functions $f(x) = e^x$ and $g(x) = \sin(x)$. Calculate the $LD_2(0)$ of the composition $f(g(x)) = e^{\sin(x)}$.

The $LD_2(0)$ of f(x) and g(x) are

$$f(x) = e^x = 1 + x + \frac{x^2}{2} + o(x^2)$$

$$g(x) = x - \frac{x^3}{6} + o(x^3).$$

Then

$$f(g(x)) = e^{\sin(x)} = 1 + \left(x - \frac{x^3}{6} + o(x^3)\right) + \frac{1}{2}\left(x - \frac{x^3}{6} + o(x^3)\right)^2 + o\left(\left(x - \frac{x^3}{6} + o(x^3)\right)^2\right)$$

By truncating the result at order 2, we obtain

$$f(g(x)) = 1 + x - \frac{x^3}{6} + \frac{1}{2}\left(x^2 - \frac{x^4}{3} + o(x^4)\right) + o(x^2) = 1 + x + \frac{x^2}{2} + o(x^2)$$

2.3 Quotient

Consider two functions f and g that admit a limited development at 0 up to order n:

$$f(x) = c_0 + c_1 x + \dots + c_n x^n + x^n \varepsilon_1(x)$$
 and $g(x) = d_0 + d_1 x + \dots + d_n x^n + x^n \varepsilon_2(x)$,

with $\lim_{x\to 0} \varepsilon_1(x) = \lim_{x\to 0} \varepsilon_2(x) = 0$.

To calculate the limited development of the quotient $\frac{f}{g}$, we will use the limited development of

$$\frac{1}{1+u} = 1 - u + u^2 - u^3 + \dots + (-1)^n u^n + o(u^n),$$

We have three possible cases:

Case 1: If $d_0 = 1$, we set $u = d_1x + \cdots + d_nx^n + x^n\varepsilon_2(x)$, and the quotient can be written as

$$\frac{f}{g} = f \times \frac{1}{1+u}.$$

Case 2: If $d_0 \neq 0$ and $d_0 \neq 1$, then we reduce to the previous case by rewriting

$$\frac{1}{g(x)} = \frac{1}{d_0} \times \frac{1}{1 + \frac{d_1}{d_0}x + \dots + \frac{d_n}{d_0}x^n + x^n \frac{\varepsilon_2(x)}{d_0}}.$$

Case 3: If $d_0 = 0$, then we factor by x^k (for some k) to reduce to one of the previous cases.

Example 9. We aim to find the $LD_4(0)$ of the function $f(x) = \frac{x}{\sin(x)}$. The limited development of $\sin(x)$ at x = 0 is given by:

$$\sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5)$$

then

$$f(x) = \frac{x}{\sin(x)} = \frac{x}{x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5)} = \frac{1}{1 - \frac{x^2}{6} + \frac{x^4}{120} + o(x^4)}$$

Using the expansion for $\frac{1}{1+u}$

$$\frac{1}{1+u} = 1 - u + u^2 + o(x^2)$$

where

$$u = -\frac{x^2}{6} + \frac{x^4}{120} + o(x^4).$$

We find

$$f(x) = 1 - \left(-\frac{x^2}{6} + \frac{x^4}{120}\right) + \left(-\frac{x^2}{6} + \frac{x^4}{120}\right)^2 + o(x^4)$$

By truncating the result at order 4, we obtain

$$f(x) = 1 - \left(-\frac{x^2}{6} + \frac{x^4}{120}\right) + \left(-\frac{x^2}{6}\right)^2 + o(x^4)$$
$$f(x) = 1 + \frac{x^2}{6} + \frac{11x^4}{120} + o(x^4)$$

2.4 Integration

Let F be a primitive of f. The function F has a limited development at a up to order n+1, which is written as:

$$F(x) = F(a) + c_0(x-a) + c_1 \frac{(x-a)^2}{2!} + \dots + c_n \frac{(x-a)^{n+1}}{(n+1)!} + (x-a)^{n+1} \theta(x)$$

where $\lim_{x\to a} \theta(x) = 0$.

This means that we integrate the polynomial part term by term to obtain the Taylor expansion of F(x), starting from the constant F(a).

Example 10. Let $f(x) = \arctan(x)$ be defined on \mathbb{R} . Let's find its limited development at 0. We have $f'(x) = \frac{1}{1+x^2}$, the $LD_n(0)$ of $\frac{1}{1+x^2}$ at 0 is:

$$f'(x) = \frac{1}{1+x^2} = 1 - x^2 + x^4 + \dots + (-1)^n x^{2n} + o(x^{2n})$$

Now, integrate f'(x) to find f(x):

$$f(x) = \int (1 - x^2 + x^4 + \dots + (-1)^n x^{2n} + o(x^{2n})) dx$$

we qet:

$$f(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+1})$$

.

3 Applications of Limit Developments

3.1 Limit Calculation

We seek to calculate $\lim_{x\to a} f(x)$. If f admits a limited development at a to the order n, then

$$f(x) = c_0 + c_1(x-a) + \dots + c_n(x-a)^n + (x-a)^n \varepsilon(x)$$

and therefore,

$$\lim_{x \to a} f(x) = \lim_{x \to a} (c_0 + c_1(x - a) + \dots + c_n(x - a)^n + (x - a)^n \varepsilon(x)).$$

Example 11. Calculate $\lim_{x\to 0} \frac{\sin(x)-x}{x(\cos(x)-1)}$.

We can see that this limit is an indeterminate form. We know the $DL_3(0)$ of $\sin(x)$ and $\cos(x)$ in 0

$$\sin(x) - x = \frac{x^3}{3!} + x^3 \varepsilon(x),$$

 $x(\cos(x) - 1) = \frac{x^3}{2!} + x^3 \varepsilon(x),$

by substituting we have

$$\lim_{x \to 0} \frac{\sin(x) - x}{x(\cos(x) - 1)} = \lim_{x \to 0} \frac{\frac{x^3}{3!}}{\frac{x^3}{2!}} = \lim_{x \to 0} \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{3}.$$

3.2 Continuity and Differentiability from a limited development

Let f(x) be a function defined on an interval I, except at x = 0. If f admits a first-order limited development at x = 0, meaning $f(x) = a_0 + a_1 x + x \epsilon(x)$; then the following results hold:

- 1. Extension by Continuity: we can extend the function to be continuous at x = 0 by defining: $f(0) = a_0$
- 2. **Differentiability at** x = 0: This extension guarantees that f(x) is differentiable at x = 0, with $f'(0) = a_1$
- 3. Equation of the Tangent Line: The equation of the tangent line to f(x) at x = 0 is: $y = a_0 + a_1 x$

Example 12. Let $f(x) = \frac{e^x - 1}{x}$ with $e^x = 1 + x + \frac{x^2}{2!} + o(x^2)$, then

$$f(x) = \frac{x + \frac{x^2}{2} + x^2 \varepsilon(x)}{x} = 1 + \frac{x}{2} + x^2 \varepsilon(x)$$

- 1. We can extend f by continuity at x = 0 by posing f(0) = 1.
- 2. The function is differentiable at x=0 with $f'(0)=\frac{1}{2}$
- 3. The equation of the tangent line to f(x) at x = 0 is $y = 1 + \frac{x}{2}$.