# Course of Mathematics1

Chapter VI : Linear Algebra

# Lecturers:

Zemmouri A, Touati F, F, Merzoug I, Feddaoui A, Djellali F,

The 1st year Common core In Sciences and Technology Badji Mokhtar-Annaba University

Academic Year 2024-2025

# TABLE DES MATIÈRES

# 1 Methods of mathematical reasoning

|          |                                        |         |                                              | 3  |
|----------|----------------------------------------|---------|----------------------------------------------|----|
| <b>2</b> | Sets                                   | s, Real | ations and Applications                      | 4  |
| 3        | Rea                                    | l funct | tion of a real variable                      | 5  |
| 4        | An application of elementary functions |         | 6                                            |    |
| 5        | Lim                                    | ited D  | Developpement                                | 7  |
| 6        | Linear Algebra                         |         | 8                                            |    |
|          | 6.1                                    | Laws    | of internal composition                      | 8  |
|          |                                        | 6.1.1   | Group Structure                              | 12 |
|          |                                        | 6.1.2   | Ring structure                               | 13 |
|          |                                        | 6.1.3   | structure of a body                          | 13 |
|          | 6.2                                    | Vector  | Espace                                       | 14 |
|          |                                        | 6.2.1   | Definitions and elementary properties        | 14 |
|          |                                        | 6.2.2   | Sum of two vector subspaces                  | 16 |
|          |                                        | 6.2.3   | Direct sum of two vector subspaces           | 16 |
|          |                                        | 6.2.4   | Generating families, free families and bases | 17 |

| 6.3 | Linear | application                                     | 20 |
|-----|--------|-------------------------------------------------|----|
|     | 6.3.1  | Definitions                                     | 20 |
|     | 6.3.2  | Kernel, image, and rank of a linear application | 22 |
|     | 6.3.3  | linear application to finite dimension spaces   | 24 |

| CHAPITRE $1$ |                                   |
|--------------|-----------------------------------|
|              |                                   |
|              |                                   |
|              | Methods of mathematical reasoning |

| CHAPITRE 2_ |                      |              |
|-------------|----------------------|--------------|
| l           |                      |              |
|             |                      |              |
|             | Sets, Realations and | Applications |

| CHAPITRE 3 |                                  |
|------------|----------------------------------|
|            |                                  |
|            |                                  |
|            | Real function of a real variable |

| CHAPITRE 4 |                                         |
|------------|-----------------------------------------|
|            |                                         |
|            |                                         |
|            | —An application of elementary functions |

| CHAPITRE 5 |                       |
|------------|-----------------------|
| l          |                       |
|            |                       |
|            | Limited Developpement |

CHAPITRE 6\_\_\_\_\_\_Linear Algebra

# 6.1 Laws of internal composition

**Definition 6.1.1** Let G a set. An intenal composition on G is an application of  $G \times G$  in G. If we write it down

$$G \times G \rightarrow G$$
 $(a,b) \rightarrow a * b$ 

we are talking about the law \* and they say that a\*b is the compound of a and b for the law \*.

**Example 6.1.1** On  $G = \mathbb{Z}$ , the addition defined by

$$\begin{array}{ccc} \mathbb{Z} \times \mathbb{Z} & \to & \mathbb{Z} \\ (a,b) & \to & a+b \end{array}$$

the multplication

$$\mathbb{Z} \times \mathbb{Z} \quad \to \quad \mathbb{Z}$$
$$(a,b) \quad \to \quad a \times b$$

#### Example 6.1.2 and the subtraction

$$\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$
 $(a,b) \to a-b$ 

 $are \quad internal \ composition \ laws$ 

On  $G = \mathbb{R}^2$  the addition

$$\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$$

$$((x_1, y_1), (x_2, y_2)) \to (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

is internal law.

#### **Example 6.1.3** In $\mathbb{R}^*$ we define the law $\delta$ by :

$$x\delta y = x + y + \ln|xy|$$

then the law  $\delta$  is internal on  $\mathbb{R}^*, indeed,$  soit  $x;y\in\mathbb{R}^*$  , let's show that  $x\delta y\in\mathbb{R}^*$  , as

$$(x\delta y = 0) \Leftrightarrow (x + y + \ln|xy| = 0)$$

$$\Leftrightarrow (\ln|xy| = -(x + y))$$

$$\Leftrightarrow (|xy| = e^{-(x+y)})$$

$$\Leftrightarrow (x \neq 0 \text{ and } y \neq 0)$$

so  $x\delta y \in \mathbb{R}^*$  is an internal law.

**Definition 6.1.2** Let \* an internal law on a set G.

1) The law \* is commutative if

$$\forall x, y \in G, \quad x * y = y * x$$

2) The law \* is associative if

$$\forall x; y; z \in G, \quad (x * y) * z = x * (y * z)$$

3) The law \* admits on G a neutral element, noted e, if

$$\exists e \in G, \ \forall x \in G, \ x * e = e * x = x$$

if, you can also, the law \* is commutative, just show that

$$\forall x \in G, \quad x * e = x$$

**Example 6.1.4** In  $\mathbb{R} - \left\{\frac{1}{2}\right\}$  The internal law \* is defined by :

$$x * y = x + y - 2xy$$

the law \* is internal on  $\mathbb{R} - \left\{\frac{1}{2}\right\}$ , indeed, let  $x, y \in \mathbb{R} - \left\{\frac{1}{2}\right\}$ , show that  $x * y \in \mathbb{R} - \left\{\frac{1}{2}\right\}$  as

$$x * y = \frac{1}{2} \Leftrightarrow x + y - 2xy = \frac{1}{2}$$

$$\Leftrightarrow x (1 - 2y) - \frac{1}{2} (1 - 2y) = 0$$

$$\Leftrightarrow (1 - 2y) \left( x - \frac{1}{2} \right) = 0$$

$$\Leftrightarrow \left( y - \frac{1}{2} \right) \left( x - \frac{1}{2} \right) = 0$$

$$\Leftrightarrow y = \frac{1}{2}, \text{ or } x = \frac{1}{2}$$

so  $x * y \in \mathbb{R} - \left\{\frac{1}{2}\right\}$  and then \* is an internal law. Let  $x, y; z \in \mathbb{R} - \left\{\frac{1}{2}\right\}$ , we have

$$x * y = x + y - 2xy = y + x - yx = y * x$$

then the law \* is commutative.

$$(x*y)*z = (x+y-2xy)*z = (x+y-2xy)+z-2(x+y-2xy)z$$

$$= x+y+z-2xy-2xz-2yz+4xyz$$

$$= x+(y+z-2yz)-2x(y+z-2yz)$$

$$= x+(y*z)-2x(y*z) = x*(y*z)$$

then the law \* is associative. Let  $e \in \mathbb{R} - \left\{\frac{1}{2}\right\}$ , such that x \* e = e \* x = x, then

$$x + e - 2xe = e + x - 2ex = x \Leftrightarrow e(1 - 2x) = 0 \Leftrightarrow e = 0$$

then a law accepts as the neutral element the element e = 0.

**Definition 6.1.3** Let \* an internal law on a set G, having a neutral element e and let  $x \in G$ . It is said that x accepts a symmetrical element x' by the law  $\star$ , si

$$x * x' = x' * x = e$$

**Example 6.1.5** On  $\mathbb{R} - \left\{ \frac{1}{2} \right\}$ , we define the internal law  $\star$  by :

$$x * y = x + y - 2xy$$

the law \* admits like neutral element. Soit  $x \in \mathbb{R} - \left\{\frac{1}{2}\right\}$ , such that  $x \star x' = x' * x = e$ , then

$$x + x' - 2xx' = x'(1 - 2x) = -x \Leftrightarrow x' = \frac{x}{2x - 1},$$

then, the symmetrical element of x is

$$x' = \frac{x}{2x - 1}$$
, for all  $x \in \mathbb{R} - \left\{ \frac{1}{2} \right\}$ 

show that  $x' \in \mathbb{R} - \left\{\frac{1}{2}\right\}$ . Indeed, let  $x, y \in \mathbb{R} - \left\{\frac{1}{2}\right\}$ , show that  $x \star y \in \mathbb{R} - \left\{\frac{1}{2}\right\}$ , we have

$$x' = \frac{1}{2} \Leftrightarrow 2x - 1 = 2x \Leftrightarrow -1 = 0$$

which is absurd, hence  $x' \in \mathbb{R} - \left\{\frac{1}{2}\right\}$ .

**Definition 6.1.4** Let G a set provided with two internal composition laws, denoted  $\Delta$  and  $\star$ . They say \* is distributive in relation to  $\Delta$  if

$$\forall x, y, z \in G, \quad x * (y\Delta z) = (x * y) \Delta (x * z)$$

### 6.1.1 Group Structure

**Definition 6.1.5** Let G provided with a law of internal composition \*. It is said that (G,\*) is a group if the law \* satisfies the following three conditions:

- 1) \* is associative.
- 2) \* admits a neutral element
- 3) Each element of G allows a symmetrical for \*.

If, moreover, the law is commutative, it is said that the group is commutative or abelian (named after the mathematician Abel).

**Example 6.1.6** 1)  $(\mathbb{Z},+)$  is a commutative group.

- 2)  $(\mathbb{R}, \times)$  is not a group because 0 does not allow symmetrical elements.
- 3)  $(\mathbb{R}^*, \times)$  is a commutative group.

**Definition 6.1.6** Let (G, \*) a group. A part  $H \subset G$  (non-empty) is a subgroup of G if the restriction of the operation \* to H gives it the group structure.

**Proposition 6.1.1** Let H is a non-empty part of the group G. Then, H is subgroup de G if and only of,

- 1) For all  $x, y \in H$ , we have  $x * y \in H$ ,
- 2) For all  $x \in H$ , we have  $x' \in H$ , avec  $x' \in is$  the symmetrical of x.

**Example 6.1.7**  $(\mathbb{R}_+^*, \times)$  is a subgroup of  $(\mathbb{R}_+^*, \times)$ . Indeed:

- 1) Si  $x, y \in \mathbb{R}_+^*$ , alors  $x \times y \in \mathbb{R}_+^*$ ,
- 2) Si  $x \in \mathbb{R}_+^*$  alors  $x' = \frac{1}{x}$  symmetrical element of x and  $x' = \frac{1}{x} \in \mathbb{R}_+^*$ .

**Example 6.1.8** We pose  $2\mathbb{Z} = \{2z : z \in \mathbb{Z}\}, \{2\mathbb{Z}, +\}$  is a subgroup of  $\mathbb{Z}$ . Indeed:

1) If  $x, y \in 2\mathbb{Z}$ , it exists  $x_1 \in \mathbb{Z}$  such that  $x = 2x_1$  and  $y = 2y_1$ , then

$$x + y = 2x_1 + 2y_1 = 2(x_1 + y_1) \in 2\mathbb{Z}.$$

2) If  $x \in 2\mathbb{Z}$ , it exists  $x_1 \in \mathbb{Z}$  such that  $x = 2x_1$  then

$$-x = -2x_1 = 2(-x) \in 2\mathbb{Z}.$$

#### 6.1.2 Ring structure

**Definition 6.1.7** Let A a set provided with two internal composition laws, denoted  $\Delta$  and  $\star$ .  $(A, \Delta, *)$  is said to be a ring if the following conditions are satisfies:

- 1)  $(A, \Delta)$  is a commutative group.
- 2) The law \* is associative.
- 3) The law \* is distributive in relation to the law  $\Delta$ .

If, moreover, the law \* is commutative, it said that the law  $(A, \Delta, *)$  is commutative.

If the law \* allows a neutral element, it is said that the ring  $(A, \Delta, *)$  is unitary.

**Example 6.1.9**  $(\mathbb{Z},+,.)$  is a ring commutative and unitary.

## 6.1.3 structure of a body

**Definition 6.1.8** Let k a set provided with two internal composition laws, denoted  $\Delta$  and  $\star$ .  $(A, \Delta, *)$  is said to be a body if the following conditions are satisfies:

- 1)  $(\mathbb{k}, \Delta, *)$  is a ring.
- 2)  $(\mathbb{k} \{e\}, \Delta)$  is a group, hence e is the neutral element of \*.

**Example 6.1.10**  $(\mathbb{R}, +, .)$  is a commutative body.

# 6.2 Vector Espace

### 6.2.1 Definitions and elementary properties

Let  $\mathbb{k}$  be a commutative body (usually it's  $\mathbb{R}$  or  $\mathbb{C}$ ) and let E be a non-empty assembly provided with an internal operation denoted by (+)

$$(+): E \times E \to E$$
  
 $(x,y) \to (x+y)$ 

and an external operation noted (.)

$$(.): \mathbb{k} \times E \to E$$
  
 $(\lambda, y) \to (\lambda.y)$ 

**Definition 6.2.1** A vector space on the body  $\mathbb{k}$  or a  $\mathbb{k}$ -vector space is a triplet (E, +, .) such that :

- 1) (E, +) is a commutative group.
- 2)  $\forall \lambda \in \mathbb{k}, \forall x, y \in E, \lambda. (x + y) = \lambda.x + \lambda.y.$
- 3)  $\forall \lambda, \mu \in \mathbb{k}, \forall x \in E, (\lambda + \mu) . x = \lambda . x + \mu . x$ .
- 4)  $\forall \lambda, \mu \in \mathbb{k}, \forall x \in E, (\lambda.\mu).x = \lambda(.\mu.x)$
- 5)  $\forall x \in E, 1_k.x = x$

The elements of the vector space are called vectors and those of k are called scalars.

**Example 6.2.1** 1)  $(\mathbb{R}, +, .)$  is a  $\mathbb{R}$ -vector space,

- 2)  $(\mathbb{C}, +, .)$  is a  $\mathbb{C}$ -vector space,
- 3)  $(\mathbb{C}, +, .)$  is a  $\mathbb{R}$ -vector space,
- 4) If we consider  $\mathbb{R}^n$  provided with the following two operations

$$(+): \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R}^{n}$$

$$((x_{1}, x_{2}, ..., x_{n}), (y_{1}, y_{2}, ..., y_{n})) \to (x_{1} + y_{1}, x_{2} + y_{2}, ..., x_{n} + y_{n})$$

$$(.): \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R}^{n}$$

$$(\lambda (y_{1}, y_{2}, ..., y_{n})) \to (\lambda y_{1}, \lambda y_{2}, ..., \lambda y_{n})$$

It can easily shown that  $(\mathbb{R}^n, +, .)$  is a  $\mathbb{R}$ -vector space.

**Proposition 6.2.1** If E is a k-vector space, then we have the following properies:

- 1)  $\forall x \in E, \ 0_{k}.x = 0_{E}.$
- 2)  $\forall x \in E, (-1_k) . x = x$
- 3)  $\forall \lambda \in \mathbb{k}, \ \lambda.0_E = 0_E$
- 4)  $\forall \lambda \in \mathbb{k}, \forall x, y \in E, \lambda (x y) = \lambda . x \lambda . y$
- 5)  $\forall \lambda \in \mathbb{k}, \ \forall x \in E, \ \lambda.x = 0_E \Leftrightarrow \lambda = 0_k \ or \ x = 0_E.$

**Definition 6.2.2** Let (E, +, .) be  $\mathbb{k}$ -vector space and let F be non-empty sub set of F. it is said that F is vector subspace if (F, +, .) is also a  $\mathbb{k}$ -vector space.

**Remark 6.2.1** 1) When (F, +, .) is  $\mathbb{k}$ -vector space of (E, +, .) then  $0_E \in F$ .

2) If  $0_E \notin F$ , then (F, +, .) can't be a  $\mathbb{k}$ -vector space of (E, +, .).

**Theoreme 6.2.1** Let (E, +, .) be k-vector space and  $F \subset E$ , F non empty we have the following equivalence:

- 1) F is a vector subspace of E.
- 2) F is stable by addition and by multiplication, i.e :

$$\forall \lambda \in \mathbb{k}, \ \forall x, y \in F, \ \lambda.x \in F \ and \ x + y \in F$$

3)  $\forall \lambda, \mu \in \mathbb{k}, \forall x, y \in F, \lambda x + \mu y \in F$ , so

$$F \ is \ a \ vector \ subspace \ \Leftrightarrow \left\{ \begin{array}{l} F \neq \varnothing \\ \forall \lambda, \mu \in \Bbbk, \forall x, y \in F, \lambda.x + \mu.y \in F \end{array} \right.$$

**Example 6.2.2** We pose  $F = \{(x, y) \in \mathbb{R}^2 : x - y = 0\} \subset \mathbb{R}^2$ , then F is a vector subspace, indeed,

- 1)  $0_{\mathbb{R}^2} = (0,0) \in F$ , because 0-0=0
- 2)  $\forall \lambda, \mu \in \mathbb{R}, \forall (x, y), (x', y') \in F$ , then x y = 0, and x' y' = 0, so

$$\lambda (x - y) + \mu (x' - y') = (\lambda x + \mu x') - (\lambda y + \mu y') = 0,$$

i.e,  $\lambda(x,y) + \mu(x',y') \in F$ , so F is vector subspace of  $\mathbb{R}^2$ .

**Proposition 6.2.2** The intersection of a non-empty family of vector subspaces is a vector subspace.

**Remark 6.2.2** Reuniting two vector subspaces is not necessarily a vector subspace.

**Example 6.2.3** Let  $F_1 = \{(x,y) \in \mathbb{R}^2 : x = 0\}$  and  $F_2 = \{(x,y) \in \mathbb{R}^2 : y = 0\}$  two vector subspaces in  $\mathbb{R}^2$ ,  $F_1 \cup F_2$  is not a vector subspace, because

$$u_1 = (1,0) \in F_1, u_1 = (0,1) \in F_2 \text{ and } u_1 + u_2 = (1,1) \notin F_1 \cup F_2$$

#### 6.2.2 Sum of two vector subspaces

**Definition 6.2.3** Let  $E_1$ ,  $E_2$  two vector subspaces of  $\mathbb{k}$ -vector space E, it said Sum of two vector subspaces,  $E_1$  and  $E_2$ , which we note  $E_1 + E_2$  the following set:

$$E_1 + E_2 = \{x \in E : \exists x_1 \in E_1, \exists x_2 \in E_2 \text{ such that } x = x_1 + x_2\}$$

**Example 6.2.4** Let's  $E_1 = \{(x, y) \in \mathbb{R}^2 : x = 0\}$  and  $E_2 = \{(x, y) \in \mathbb{R}^2 : y = 0\}$  two vector subspaces in  $\mathbb{R}^2$ , if  $(x, y) \in \mathbb{R}^2$ , then

$$(x,y) = (0,y) + (x,0)$$
  
 $\in E_1$ 

So 
$$(x, y) \in E_1 + E_2$$
, then  $E_1 + E_2 = \mathbb{R}^2$ .

**Proposition 6.2.3** The sum of two vector subspaces  $E_1$  and  $E_2$  ( of the same  $\mathbb{k}$ -vector space) is a vector subspace of E container  $E_1 \cup E_2$ , i, e,

$$E_1 \cup E_2 \subset E_1 + E_2$$

### 6.2.3 Direct sum of two vector subspaces

**Definition 6.2.4** Let  $E_1, E_2$  two vector subspaces of the same  $\mathbb{k}$ -vector space E. It will be said that the sum  $E_1 \oplus E_2$  of two vector subspaces, is direct if  $E_1 \cap E_2 = \{0\}$ . We write  $E_1 \oplus E_2$ .

**Proposition 6.2.4** Let  $E_1$ ,  $E_2$  two vector subspaces of the same  $\mathbb{k}$ -vector space E. The sum  $E_1 + E_2$  is direct if  $\forall x \in E_1 + E_2$ , there is a single vector  $x_1 \in E_1$ , a single vector  $x_2 \in E_2$  such that  $x = x_1 + x_2$ 

**Example 6.2.5** Let's  $F_1 = \{(x, y, z) \in \mathbb{R}^3 : x = 0\}$  and  $F_2 = \{(x, y, z) \in \mathbb{R}^3 : y = z = 0\}$  two vector subspaces in  $\mathbb{R}^3$ .

1) Let  $(x, y, z) \in \mathbb{R}^3$ , then

$$(x, y, z) = (0, y, z) + (x, 0, 0)$$
  
 $\in F_1$ 

then  $(x, y, z) \in F_1 + F_2$ , hence  $F_1 + F_2 = \mathbb{R}^3$ .

2) Let  $(x, y, z) \in F_1 \cap F_2$ , then  $(x, y, z) \in F_1$  and  $(x, y, z) \in F_2$ , it means that x = 0 and y = z = 0, then  $(x, y, z) = 0_{\mathbb{R}^3}$ , i.e.,  $F_1 \cap F_2 = \{0\}$ .

Finally, we conclude that  $\mathbb{R}^3 = F_1 \oplus F_2$ .

## 6.2.4 Generating families, free families and bases

Hereinafter, the vector space (E, +, .) will be designated by E.

**Definition 6.2.5** Let E be a vector space and  $e_1, e_2, ..., e_n$  elements of E.

1) They say that  $\{e_1, e_2, ..., e_n\}$  are free or linearly independent, if for all  $\alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{k}$ :

$$\alpha_1 e_1 + \alpha_2 e_2 + \ldots + \alpha_n e_n = 0_E \Rightarrow \alpha_1 = \alpha_2 = \ldots = \alpha_n = 0_k$$

if they are not, they are said to be related.

2) They say that  $\{e_1, e_2, ..., e_n\}$  is a generates family E, or that E is generated by  $\{e_1, e_2, ..., e_n\}$  if

$$\forall x \in E, \exists \alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{k}, \quad x = \alpha_1 e_1 + \alpha_2 e_2 + ... + \alpha_n e_n$$

3) If  $\{e_1, e_2, ..., e_n\}$  is a free and generates family of E, so  $\{e_1, e_2, ..., e_n\}$  is called a base of E.

**Example 6.2.6** On  $\mathbb{R}^2$ , we pose  $u_1 = (1,0)$ ,  $u_2 = (1,-1)$ , then  $\{u_1, u_2\}$  is a base of  $\mathbb{R}^2$ . Indeed

i)  $\{u_1, u_2\}$  is free.  $\forall \alpha_1, \alpha_2 \in \mathbb{R}$ ,

$$(\alpha_1 u_1 + \alpha_2 u_2 = 0) \Rightarrow \alpha_1 (1,0) + \alpha_2 (1,-1) = (0,0)$$
$$\Rightarrow (\alpha_1 + \alpha_2, -\alpha_2) = (0,0)$$
$$\Rightarrow \alpha_1 = \alpha_2 = 0$$

ii)  $\{u_1, u_2\}$  is generating.  $\forall (x, y) \in \mathbb{R}^2$ ,

$$(x,y) = \alpha_1 u_1 + \alpha_2 u_2 = (\alpha_1 + \alpha_2, -\alpha_2) \Rightarrow \alpha_2 = -y \in \mathbb{R} \text{ and } \alpha_1 = x + y \in \mathbb{R},$$

then it existe  $\alpha_1, \alpha_2 \in \mathbb{R}$ 

Remark 6.2.3 In a vector space E, all non-zero vector is free.

**Example 6.2.7** in all the polynomials of degree less than or equal to 2 with real coefficients and with an indeterminate x

$$\mathbb{R}_{2}[x] = \{P(x) = a + bx + cx^{2} : a, b, c \in \mathbb{R}\}\$$

then  $\{p_1(x) = 1, p_2(x) = x, p_3(x) = x^2\}$  is a base family. Indeed i) Let  $\alpha, \beta, \gamma \in \mathbb{R}$ , then

$$\forall x \in \mathbb{R} : \alpha p_1(x) + \beta p_2(x) + \gamma p_3(x) = 0 \Leftrightarrow \forall x \in \mathbb{R} : \alpha + \beta x + \gamma x^2 = 0$$

what gives  $\alpha = \beta = \gamma = 0$ , then then  $\{1, x, x^2\}$  is a free family.

ii) Let  $P \in \mathbb{R}_2[x]$ , then it exists  $a, b, c \in \mathbb{R}$ , such that

$$\forall x \in \mathbb{R} : P(x) = a + bx + cx^2 = ap_1(x) + bp_2(x) + cp_3(x)$$

i, e,

$$P = ap_1 + bp_2 + cp_3$$

then  $\{1, x, x^2\}$  is generating.

**Proposition 6.2.5** If  $\{e_1, e_2, ..., e_n\}$  and  $\{u_1, u_2, ..., u_m\}$  are two bases of the vector space E, then n = m.

**Remark 6.2.4** If a vector space E admits a base then all the bases of E have the same number of elements (or same cardinal), this number does not depend on the base but it depends only on the space E.

**Definition 6.2.6** Let E be a k-vectoriel space of base  $B = \{e_1, e_2, ..., e_n\}$ , The dimension of E, denoted dim E, is the number defined by dim(E) = Card(B) where Card(B) is the cardinal of B.

**Example 6.2.8** We pose  $e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1), then <math>\{e_1, e_2, e_3\}$  is a base of  $\mathbb{R}^3$ , so

$$\dim (\mathbb{R}^3) = Card (\{e_1, e_2, e_3\}) = 3$$

**Example 6.2.9** On  $\mathbb{R}_2[x]$ , the family  $\{1, x, x^2\}$  is a base of  $\mathbb{R}_2[x]$ 

$$\dim \mathbb{R}_2[x] = Card\{1, x, x^2\} = 3$$

**Theoreme 6.2.2** Let E a vector space of dimension n, then

- 1) If  $\{e_1, e_2, ..., e_n\}$  is a base of  $E \Leftrightarrow \{e_1, e_2, ..., e_n\}$  is generated  $\Leftrightarrow \{e_1, e_2, ..., e_n\}$  is free.
- 2) If  $\{e_1, e_2, ..., e_p\}$  are p vectors in E, with  $p \succ n$ , then  $\{e_1, e_2, ..., e_p\}$  cannot be free, moreover si  $\{e_1, e_2, ..., e_p\}$  is generaty, then there are n parmis vectors  $\{e_1, e_2, ..., e_p\}$  which form a basis E.
- 3) If  $\{e_1, e_2, ..., e_p\}$  are p vectors in E, with p < n, then  $\{e_1, e_2, ..., e_p\}$  cannot be generaty, then it exist (n-p) vectors  $\{e_{p+1}, e_{p+2}, ..., e_n\}$  on E suc that  $\{e_1, e_2, ..., e_{p+1}, ..., e_n\}$  is a basis for E.
- 4) If F be a vector subspace of E then dim  $F \leq n$ , and more dim  $F = n \Leftrightarrow F = E$ .

# 6.3 Linear application

#### 6.3.1 Definitions

**Definition 6.3.1** Let's E and F two k-vector spaces. An application f of E on F is linear application if satisfies the following two conditions:

$$\forall x, y \in E, \quad f(x+y) = f(x) + f(y)$$
  
 $\forall x \in E, \forall \lambda \in \mathbb{k}, \quad f(\lambda x) = \lambda f(x)$ 

where in an equivalent manner

$$\forall x, y \in E, \ \forall \lambda \in \mathbb{k}, \ f(\lambda x + y) = \lambda f(x) + f(y)$$

**Remark 6.3.1** The set's of the linear application of E on F denoted  $\mathcal{L}(E, F)$ .

**Example 6.3.1** The application f defined by

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
$$(x, y, z) \to f(x, y, z) = (2x + y, y - z)$$

is a linear application. Indeed, let's (x,y,z) , $(x',y',z') \in \mathbb{R}^3$  and  $\lambda \in \mathbb{R}$ , we have

$$f[(x,y,z) + (x',y',z')] = f(x+x',y+y',z+z')$$

$$= (2(x+x') + (y+y'), (y+y') - (z+z'))$$

$$= (2x + 2x' + y + y', y + y' - z - z')$$

$$= ((2x + y) + (2x' + y'), (y - z) + (y' - z'))$$

$$= (2x + y, y - z) + (2x' + y', y' - z')$$

$$= f(x,y,z) + f(x',y',z')$$

and

$$f[\lambda(x, y, z)] = f(\lambda x, \lambda y, \lambda z) = (2\lambda x + \lambda y, \lambda y - \lambda z) = (\lambda(2x + y), \lambda(y - z))$$
$$= \lambda(2x + y, y - z)$$
$$= \lambda f(x, y, z)$$

Remark 6.3.2 All the applications aren't linear applications.

**Definition 6.3.2** Let's E and F are two k-vector spaces, and let  $f \in \mathcal{L}(E, F)$ . They say that

- 1) f is an isomorphism of E on F, if f is bijective.
- 2) f is an endomorphism, if (E, +, .) = (F, +, .).
- 3) f is an autorphism, if f is endorphism and isomorphism.

#### **Example 6.3.2** The application f defined by

$$f: \mathbb{R} \to \mathbb{R}$$
  
 $x \to f(x) = -2x$ 

is an automorphisme, Indeed, let  $x, y, \lambda \in \mathbb{R}$ , we have

$$f(\lambda x + y) = -2(\lambda x + y) = \lambda(-2x) + (-2y) = \lambda f(x) + f(y)$$

and the application f is bijective, where

$$f^{-1}$$
 :  $\mathbb{R} \to \mathbb{R}$   
 $x \to f^{-1}(x) = \frac{-1}{2}x$ 

#### Notation.

The null application, denoted  $0_{\mathcal{L}(E,F)}$  is given by :

$$f: E \to F, \quad x \to f(x) = 0_F$$

the identity application, noted  $id_E$  is given by :

$$id_E: E \to F, \quad x \to id_E(x) = x$$

**Proposition 6.3.1** Let f is a linear application of E on F, we have

1) 
$$f(0_E) = 0_F$$

2) 
$$\forall x \in E : f(-x) = -f(x)$$

**Proof** Let  $x \in E$ , we have

$$1)f(0_E) = f(0_k.0_E) = 0_k.f(0_E) = 0_F,$$
  
$$2)f(-x) = f((-1).x) = (-1)f(x) = -f(x)$$

#### 6.3.2 Kernel, image, and rank of a linear application

**Definition 6.3.3** Let f be a linear application of E on F.

1) The set f(E) is called the image of the linear application f and is denoted  $\operatorname{Im} f$  i.e

$$\operatorname{Im} f = \{f(x) : x \in E\}$$

2) The set  $f^{-1}(\{0\})$  is called the kernel of the linear application and is denoted ker f i.e

$$\ker f = \{ x \in E, \quad f(x) = 0_F \}$$

**Example 6.3.3** Let  $f: \mathbb{R}^2 \to \mathbb{R}$  be a linear application defined by

$$(x,y) \to f(x,y) = x - y$$

The kernel of the linear application f,

$$\ker f = \{(x,y) \in \mathbb{R}^2 : x - y = 0\}$$
$$= \{(x,y) \in \mathbb{R}^2 : x = y\}$$
$$= \{x(1,1), x \in \mathbb{R}\}$$

then the ker f is a vector subspace generated by e = (1,1) then it's dimension one, and its base is  $\{e\}$ .

The image of the linear application f,

Im 
$$f = \{f(x,y) : (x,y) \in \mathbb{R}^2\}$$
  
=  $\{x - y, (x,y) \in \mathbb{R}^2\} = \mathbb{R}$ 

**Proposition 6.3.2** Let f be a linear application of E on F.

- 1) Im f is a vector subspace of F.
- 2)  $\ker f$  is a vector subspace of E.

**Definition 6.3.4** Let f be a linear application of E in F, if dim Im  $f = n < +\infty$ , then n its said the rank of f and and the note rg(f).

**Proposition 6.3.3** Let f be a linear application of E in F, we have the following equivalences:

- (i) f is surjective  $\Leftrightarrow \operatorname{Im} f = F$
- (ii) f is injective  $\Leftrightarrow \ker f = \{0_E\}$ .

**Example 6.3.4** Let  $f: \mathbb{R}^2 \to \mathbb{R}^2$  a linear application defined by

$$(x,y) \rightarrow f(x,y) = (y,x)$$

we have

Im 
$$f = \{f(x,y) : (x,y) \in \mathbb{R}^2\} = \{(y,x) : (x,y) \in \mathbb{R}^2\}$$
  
=  $\{y(1,0) + x(0,1) : (x,y) \in \mathbb{R}^2\},$ 

and

$$\ker f = \left\{ (x, y) \in \mathbb{R}^2 : (y, x) = 0_{\mathbb{R}^2} \right\} = \left\{ (0, 0) \right\}$$

then Im  $f = \mathbb{R}^2$  and ker  $f = \{0_{\mathbb{R}^2}\}$ , then f is bijective.

### 6.3.3 linear application to finite dimension spaces

**Proposition 6.3.4** Let E and F two k-vector spaces and f and two linear applications of E in F. If E is finite dimension n and  $\{e_1, e_2, ..., e_n\}$  is a base of E, then

$$\forall k \in \{1, 2, ..., n\} : f(e_k) = g(e_k) \Leftrightarrow \forall x \in E : f(x) = g(x)$$

**Proof** the implication  $(\Leftarrow)$  is obvious.

For  $(\Rightarrow)$  we have E is generated by  $\{e_1, e_2, ..., e_n\}$ , donc

$$\forall x \in E, \exists \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{k} : x = \lambda_1 e_1 + \lambda_2 e_2 + ... + \lambda_n e_n,$$

as f and g are linears, then

$$f(x) = f(\lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n) = \lambda f(e_1) + \lambda_2 f(e_2) + \dots + \lambda_n f(e_n)$$
  

$$g(x) = g(\lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n) = \lambda g(e_1) + \lambda_2 g(e_2) + \dots + \lambda_n g(e_n)$$

so if we suppose that  $\forall k \in \{1, 2, ..., n\} : f(e_k) = g(e_k)$  then we deduce

$$\forall x \in E, f(x) = g(x)$$

**Example 6.3.5** Let f be an application of  $\mathbb{R}^2$  in  $\mathbb{R}$  such that

$$f(1,0) = -1$$
 and  $f(0,1) = 4$ ,

then  $\forall (x,y) \in \mathbb{R}^2$ , we have

$$f(x,y) = f[x(1,0) + y(0,1)] = xf(1,0) + y(0,1)$$
$$= -x + 4y$$

**Proposition 6.3.5** Let f be a linear application of E in F with dimension of E is finite, we have

$$\dim E = \dim \ker(f) + \dim \operatorname{Im}(f)$$

**Example 6.3.6** Let f be a linear application of  $\mathbb{R}^2$  in  $\mathbb{R}$  defined by

$$f(x,y) = -x + 5y$$

we have

$$\ker(f) = \{ \forall (x, y) \in \mathbb{R}^2 : f(x, y) = 0 \} = \{ (x, y) \in \mathbb{R}^2 : x = 5y \}$$
$$= \{ y (5, 1) : y \in \mathbb{R} \},$$

then dim ker(f) = 1 as dim  $\mathbb{R}^2 = 1$ , then

$$\dim \operatorname{Im}(f) = \dim \mathbb{R}^2 - \dim \ker(f) = 1$$

**Proposition 6.3.6** Let f be a linear application of E in F with dim  $E = \dim F = n$ . The following equivalences are then obtained

$$f \text{ is isomrphism } \Leftrightarrow f \text{ is surjective} \Leftrightarrow \dim \operatorname{Im}(f) = \dim F$$
 
$$\Leftrightarrow f \text{ is injective} \Leftrightarrow \operatorname{Im}(f) = F$$
 
$$\Leftrightarrow \dim \ker(f) = 0 \Leftrightarrow \ker(f) = \{0\}$$

**Remark 6.3.3** Of this proposition, we deduce that f is isomorphism of E in F with dim E finite then necessarily dim  $E = \dim F$  in other words, if dim  $E \neq \dim F$  then f cannot be an isomorphism.

**Example 6.3.7** Let  $f: \mathbb{R}^2 \to \mathbb{R}^2$  defined by

$$f(x,y) = (2x - y, x)$$

we have

$$\ker(f) = \{(x,y) \in \mathbb{R}^2 : f(x,y) = 0\}$$
$$= \{(x,y) \in \mathbb{R}^2 : 2x - y = x = 0\}$$
$$= \{(0,0)\}$$

as dim f = 2 and  $ker(f) = \{0_{\mathbb{R}^2}\}$ , then f is an isomorphism.

**Exercise 1** We define in G = ]-1,1[ the internal law \* as follows

$$\forall (x,y) \in G \times G : x * y = \frac{x+y}{1+xy}$$

Show that (G, \*) is a commutatif group.

### Solution

the law \* is internal in ]-1,1[. Indeed, let's  $x,y\in$  ]-1,1[, let's show that  $x*y\in$  ]-1,1[. We have

$$x * y \in ]-1, 1[ \Leftrightarrow |x * y| < 1 \Leftrightarrow \frac{|x + y|}{|1 + xy|} < 1$$

$$\Leftrightarrow |x + y| < |1 + xy| \Leftrightarrow (x + y)^{2} < (1 + xy)^{2}$$

$$\Leftrightarrow x^{2} (1 - y^{2}) - (1 - y^{2}) < 0$$

$$\Leftrightarrow (1 - x^{2}) (1 - y^{2}) > 0$$

as  $x, y \in ]-1, 1[$ , then  $(1-x^2)(1-y^2) \succ 0$ , hence  $x * y \in ]-1, 1[$  and then \* is an internal law.

The law \* is commutative : for all  $(x, y, z) \in G^3$ 

$$x * y = \frac{x+y}{1+xy} = \frac{y+x}{1+yx} = y * x$$

The law \* is associative : for all  $(x, y, z) \in G^3$ 

$$x*(y*z) = x*\left(\frac{y+z}{1+yz}\right) = \frac{x+\frac{y+z}{1+yz}}{1+x\frac{y+z}{1+yz}} = \frac{x+y+z+xyz}{1+yz+xy+xz}$$

and a similar calculation gives the same result for (x \* y) \* z.

The law \* admits a neutral element, because for all  $x \in ]-1,1[$ 

$$(x * e = x) \Leftrightarrow \frac{x + e}{1 + xe} = x \Leftrightarrow x + e = x(1 + xe)$$
  
  $\Leftrightarrow x^2 e = e \Leftrightarrow e = 0, \text{ because } x^2 \neq 1$ 

then e = 0 is the neutral element for the law \*.

The element of G admits an inverse in G. Let  $x \in G$ , then

$$(x*x'=e) \Leftrightarrow \frac{x+x'}{1+xx'} = 0 \Leftrightarrow x+x'=0 \Leftrightarrow x'=-x \in ]-1,1[,$$

donc the inverse of x is -x, and then (G,\*) is a commutatif groupe.

**Exercise 2** Let  $E = \{(x, y, z) \in \mathbb{R}^3 : x + y - 2z = 2x - y - z = 0\}$  a sub-set of  $\mathbb{R}^3$ .

- (1) Show that E is a vector subspace of  $\mathbb{R}^3$ .
- (2) Determine a family generates of E and extract a basis from it?
- (3) Let  $F = \{(x, y, z) \in \mathbb{R}^3 : x + y z = 0\}$  a vector subspace of  $\mathbb{R}^3$ .
  - (i) Determine a generates family of F?
  - (ii) Have we  $E \oplus F = \mathbb{R}^3$ ?

# Solution

(1) Let  $u = (x, y, z) \in E$ , then

$$\begin{cases} x+y-2z=0 \\ 2x-y-z=0 \end{cases} \Leftrightarrow \begin{cases} x+y-2z=0 \\ 3x-3z=0 \end{cases} \Leftrightarrow \begin{cases} x=y \\ x=z \end{cases}$$

then

$$E = \{(x, y, z) \in \mathbb{R}^3 : x = y = z\}$$

.  $0_{\mathbb{R}^3} \in E$ , because 0 = 0 = 0, so  $E \neq \emptyset$ .

. Let's  $u=(x,y,z)\in E,\ v=(x',y',z')\in E,$  so we have x=y=z and x'=y'=z'. Let  $\lambda,\mu\in\mathbb{R},$  then

$$\lambda u + \mu v = \lambda(x, y, z) + \mu(x', y', z') = \left(\lambda x + \mu x', \lambda y + \mu y', \lambda z + \mu z'\right)$$

as  $\lambda x + \mu x' = \lambda y + \mu y' = \lambda z + \mu z'$ , then x'' = y'' = z'', which shows that  $\lambda u + \mu v \in E$ .

#### (2) We have

$$E = \{(x, x, x) : x \in \mathbb{R}\} = \left\{x(1, 1, 1) : x \in \mathbb{R}\right\}$$

then  $\{u_1\}$  is a generates family of E, so  $\{u_1\}$  is a base of E.

$$(3-i)$$
 Let  $(x,y,z) \in F$ , then  $z=x+y$ , so

$$F = \{(x, y, x + y) : x, y \in \mathbb{R}\} = \left\{x(1, 0, 1) + y(0, 1, 1) : x, y \in \mathbb{R}\right\}$$

then  $\{u_2, u_3\}$  is a generates family of F. Show that  $\{u_2, u_3\}$  is free. Let's  $\lambda_2, \lambda_3 \in \mathbb{R}$ ,

$$\lambda_2 u_{2+} \lambda_3 u_3 = 0_{\mathbb{R}^3} \Rightarrow (\lambda_2, \lambda_3, \lambda_2 + \lambda_3) = (0, 0, 0) \Rightarrow \lambda_2 = \lambda_3 = 0,$$

so  $\{u_2, u_3\}$  is a base of F.

(3-ii) As  $\{u_1\}$  is a base of E,  $\{u_2, u_3\}$  is a basis of F, then if  $\{u_1, u_2, u_3\}$  is a basis of  $\mathbb{R}^3$ , we have  $E \oplus F = \mathbb{R}^3$ , since  $Card\{u_1, u_2, u_3\} = \dim \mathbb{R}^3 = 3$ , vyou just have to prove  $\{u_1, u_2, u_3\}$  is free. Let  $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ ,

$$\lambda_1 u_1 + \lambda_2 u_{2+} \lambda_3 u_3 = 0_{\mathbb{R}^3} \Rightarrow (\lambda_2 + \lambda_1, \lambda_3 + \lambda_1, \lambda_2 + \lambda_3) = (0, 0, 0)$$
$$\Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0$$

then  $\{u_1, u_2, u_3\}$  is a basis of  $\mathbb{R}^3$ , so  $E \oplus F = \mathbb{R}^3$ .

**Exercise 3** We consider the application  $f: \mathbb{R}^2 \to \mathbb{R}^2$  defined by:

$$f(x,y) = (x - y, -3x + 3y)$$

- (1) Show that f is a linear application.
- (2) Give a basis of its core and a basis of his image.
- (3) Determine  $f \circ f$ .

#### Solution

(1) Let's 
$$u = (x, y) \in \mathbb{R}^2$$
,  $v = (x', y') \in \mathbb{R}^2$  and  $\alpha, \beta \in \mathbb{R}$ , we have

$$f(\alpha u + \beta v) = f(\alpha x + \beta x', \alpha y + \beta y')$$

$$= (\alpha x + \beta x' - \alpha y - \beta y', -3\alpha x - 3\beta x' + 3\alpha y + 3\beta y')$$

$$= ((\alpha x - \alpha y) + (\beta x' - \beta y'), (-3\alpha x + 3\alpha y) + (-3\beta x' + 3\beta y'))$$

$$= \alpha (x - y, -3x + 3y) + \beta (x' - y', -3x' + 3y') = \alpha f(u) + \beta f(v)$$

which shows that f is linear.

(2) We have

$$\ker(f) = \{(x,y) \in \mathbb{R}^3 : f(x,y) = 0\}$$

$$= \{(x,y) \in \mathbb{R}^3 : x - y = -3x + 3y = 0\}$$

$$= \{(x,y) \in \mathbb{R}^3 : x = y\}$$

$$= \{x(1,1) : x \in \mathbb{R}\},$$

so  $\{u_1\}$  is a basis of  $\ker(f)$ .

$$\begin{aligned} & \mathrm{Im}(f) &= \left\{ f\left(x,y\right) : (x,y) \in \mathbb{R}^{3} \right\} \\ &= \left\{ (x-y, -3x+3y) : (x,y) \in \mathbb{R}^{3} \right\} \\ &= \left\{ (x-y) \left(1, -3\right) : (x,y) \in \mathbb{R}^{3} \right\} \\ &= \left\{ \lambda \left(1, -3\right) : \lambda \in \mathbb{R} \right\} = \left\{ \lambda \left(1, -3\right) : \lambda \in \mathbb{R} \right\} \end{aligned}$$

then  $\{u_2\}$  is a basis of Im(f).

(3) Let  $(x,y) \in \mathbb{R}^2$ , then

$$(f \circ f)(x,y) = f(f(x)) = f(x-y, -3x + 3y)$$

$$= ((x-y) - (-3x + 3y), -3(x-y) + 3(-3x + 3y))$$

$$= (x-y+3x-3y, -3x + 3y - 9x + 9y)$$

$$= (4x-4y, -12 + 12y)$$

**Exercise 4** Let  $f: \mathbb{R}^3 \to \mathbb{R}^3$  defined by:

$$f(x, y, z) = (-2x + y + z, x - 2y + z, x + y - 2z)$$

- (1) Show that f is a linear application.
- (2) Give a basis of ker(f) and deduce dim(Im(f))
- (3) Give a basis of Im(f).

#### Solution

(1) Let's  $u = (x, y, z) \in \mathbb{R}^3, v = (x', y', z') \in \mathbb{R}^3$ , and  $\alpha, \beta \in \mathbb{R}$ , we have

$$f(\alpha u + \beta v) = (\alpha x + \beta x', \alpha y + \beta y', \alpha z + \beta z')$$

$$= (-2\alpha x - 2\beta x' + \alpha y + \beta y' + \alpha z + \alpha z', \alpha x + \beta x' - 2\alpha y - 2\beta y' + \alpha z + \beta z', \alpha x + \beta x')$$

$$= ((-2\alpha x + \alpha y + \alpha z) + (-2\beta x' + \beta y' + \beta z'), (\alpha x - 2\alpha y + \alpha z) + (\beta x' - 2\beta y' + \beta z')$$

$$= \alpha (2x + y + z, x - 2y + z, x + y - 2z) + \beta (-2x' + y' + z', x' - 2y' + z', x' + y' - 2z)$$

$$= \alpha f(u) + \beta f(v)$$

then f is linear.

(2) We have

$$\ker(f) = \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = 0\}$$
$$= \{(x, y, z) \in \mathbb{R}^3 : -2x + y + z = x - 2y + z = x + y - 2z = 0\}$$

Then

$$(x,y,z) \in \ker(f) \Leftrightarrow \begin{cases} -2x+y+z=0 \\ x-y+z=0 \\ x+y-2z=0 \end{cases} \Leftrightarrow \begin{cases} -2x+y+z=0 \\ -3x+3z=0 \\ x+y-2z=0 \end{cases}$$

So

$$\ker(f) = \{(x, y, z) \in \mathbb{R}^3 : x = y = z\}$$
$$= \left\{x(1, 1, 1) : x \in \mathbb{R}\right\}$$

then  $\{u_1\}$  is basis of  $\ker(f)$ , and then

$$\dim (\operatorname{Im} (f)) = \dim \mathbb{R}^3 - \dim \ker (f) = 3 - \operatorname{Card} \{u_1\} = 2$$

(3) We have

$$\operatorname{Im}(f) = \left\{ f(x, y, z) : (x, y, z) \in \mathbb{R}^3 \right\}$$
$$= \left\{ x(-2, 1; 1) + y(1 - 2, 1) + z(1, 1, -2) : (x, y, z) \in \mathbb{R}^3 \right\}$$

Then  $\{v_1, v_2, v_3\}$  is a generates family, as  $v_1 + v_2 = -v_3$  and dim (Im(f)) = 2, then  $\{v_1, v_2\}$  is generates family, show that  $\{v_2, v_3\}$  is free. Let  $\lambda_2, \lambda_3 \in \mathbb{R}$ ,

$$\lambda_2 v_2 + \lambda_3 v_3 = 0_{\mathbb{R}^3} \Rightarrow (-2\lambda_2 + \lambda_3, \lambda_2 - \lambda_3, \lambda_2 + \lambda_3) = (0, 0, 0)$$
$$\Rightarrow \lambda_2 = \lambda_3 = 0$$

so  $\{v_2, v_3\}$  is a basis of Im(f).