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Linear Algebra

6.1 Laws of internal composition

Definition 6.1.1 Let G a set. An intenal composition on G is an application of
G x G in G. If we write it down

GxG — G
(a,b) — axb

we are talking about the law % and they say that a b is the compound of a and
b for the law .

Example 6.1.1 On G = Z, the addition defined by

X1 — Z
(a,b) — a+0b



6.1. Laws of internal composition

the multplication

7X7 — 7

Example 6.1.2 and the subtraction

7.xX7 — 7
(a,b) — a—»b

are internal composition laws

On G = R? the addition

RZxR? — R?
(z1,91), (22,92)) — (z1,91) + (22,92) = (21 + 22,91 + y2)

1s 1nternal law.

Example 6.1.3 In R* we define the law by :
rdy = x + y + In|zy|

then the law 0 is internal on R* indeed, soit x;y € R* | let’s show that xdy € R*

, as

(xdy=0) & (z+y+In|zy] =0)
< (nfzyl=—(z+y))
& (lryl = e )
<~

(x #0 and y #0)
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6.1. Laws of internal composition

so xoy € R* is an internal law.

Definition 6.1.2 Let % an internal law on a set G.

1) The law * is commutative if
Ve,ye G, zxy=yxcz
2) The law * is associative if
Vr,y;2 € G, (vxy)xz=x%(yx*2)
3) The law * admits on G a neutral element, noted e, if
Jdee G, VeeG, rzxe=exr==x
if, you can also, the law * is commutative, just show that
Vee G, rvxe=x
Example 6.1.4 In R — {%} The internal law * is defined by :
rxy=x+y—2xy

the law * is internal on R — {%}, indeed, let v,y € R — {%}, show that rxy €
R {1} s

1 1
TxyYy = §<:>x+y—2xy:§

& m(l—Zy)—%(l—Qy):O

< (1-2y) (x—%) =0
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6.1. Laws of internal composition

soxxy € R— {3} and then * is an internal law. Let z, y; = € R — {3}, we
have

rrxy=x+y—20y=y+r—yr=yx*xx

then the law * is commutative.

(xxy)xz = (r+y—2zy)*xz=(x+y—2zy)+2—2(x+y—2xy)2
= r4+y+z—2vy—2vz—2yz +4dvyz
= x4+ (y+2—2y2) —2x(y+ 2z — 2yz)
= o+ (yxz)—2x(yxz) =xx*(y*2)

then the law * 1s associative. Let e € R — {%} , such that xxe = exx = x, then
r+te—2ze=e+ax—2er=x<e(l-22)=0&e=0
then a law accepts as the neutral element the element e = 0.

Definition 6.1.3 Let * an internal law on a set G, having a neutral element e

and let x € G. It is said that x accepts a symmetrical element x’ by the law x , si
rxx =2 xx=c¢

Example 6.1.5 On R — {%} , we define the internal law % by :
rxy=x+y—2xy

the law * admits like neutral element. Soit x € R — {%}, such that © x x' =

' xx =e, then

X

"2 =2 (1-22)= 261 = ——
r+a =2z’ =2 ( x) TET =

then, the symmetrical element of x is

, x 1
= f R—4=
T 5 1’ or all x € {2}

12



6.1. Laws of internal composition

show that x' € ]R—{%}. Indeed, let x,y € ]R—{%}, show that xxy € R—{%},
we have
/

T :%<:>2x—1:2m<:>—1:0

which is absurd, hence ¥’ € R — {%} )

Definition 6.1.4 Let G a set provided with two internal composition laws, de-

noted A and . They say * is distributive in relation to A if

Vo,y, 2 € G, wx(yAz) = (x*y) A(r*2)

6.1.1 Group Structure

Definition 6.1.5 Let G provided with a law of internal composition . It is said
that (G, ) is a group if the law x satisfies the following three conditions :

1) x is associative.

2) * admits a neutral element

3) Each element of G allows a symmetrical for *.

If, moreover, the law is commutative, it is said that the group is commutative

or abelian (named after the mathematician Abel).

Example 6.1.6 1) (Z,+) is a commutative group.
2) (R, x) is not a group because 0 does not allow symmetrical elements.

3) (R*, x) is a commutative group.

Definition 6.1.6 Let (G,*) a group. A part H C G (non-empty) is a subgroup of

G if the restriction of the operation x to H gives it the group structure.

Proposition 6.1.1 Let H is a non-empty part of the group G. Then, H is sub-
group de G if and only of,
1) For all x,y € H, we have x xy € H,

2) For all x € H, we have x’' € H, avec &' € is the symmetrical of x.

Example 6.1.7 (R’;, ><) s a subgroup of (Rj, ><). Indeed :
1) Sixz,y € R, alors x x y € RY,

2) Six € RY alors 2’ = 1 symmetrical element of v and =’ =1 € R,

13



6.1. Laws of internal composition

Example 6.1.8 We pose 27 = {2z : z € Z} , {2Z,+} is a subgroup of Z. Indeed :
1) If x,y € 27Z, it exists x1 € Z such that v = 2x1 and y = 2y;, then

T4y =2x14+2y =2(x1+vy1) € 2Z.
2) If x € 27, it exists v1 € Z such that x = 2z, then

—x = —2x, =2(—x) € 2Z.

6.1.2 Ring structure

Definition 6.1.7 Let A a set provided with two internal composition laws, deno-
ted A and *. (A, A, x) is said to be a ring if the following conditions are satisfies :

1) (A, A) is a commutative group.

2) The law x is associative.

3) The law * is distributive in relation to the law A.

If, moreover, the law * is commutative, it said that the law (A, A, x) is com-
mutative.

If the law * allows a neutral element, it is said that the ring (A, A, %) is unitary.

Example 6.1.9 (Z,+,.) is a ring commutative and unitary.

6.1.3 structure of a body

Definition 6.1.8 Let k a set provided with two internal composition laws, deno-
ted A and x. (A, A, %) is said to be a body if the following conditions are satisfies :
1) (k, A, %) is a ring.
2) (k —{e},A) is a group, hence e is the neutral element of *.

Example 6.1.10 (R, +,.) is a commutative body.
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6.2. Vector Espace

6.2 Vector Espace

6.2.1 Definitions and elementary properties

Let k be a commutative body (usually it’s R or C) and let £ be a non-empty

assembly provided with an internal operation denoted by (+)

(+): ExXE—FE
(z,y) = (z +y)

and an external operation noted (.)

():kxFE—EFE
(A y) — (Ay)

Definition 6.2.1 A wvector space on the body k or a k—wvector space is a triplet
(E,+,.) such that :

1) (E,+) is a commutative group.

2)VN ek Ve, ye E, \.(z+y) =z + \y.

)V uekVee B, (A +p) .z = x+ p.

4)V\nek Ve e B, (Ap).x=A(px)

5)Vere B, lxx=x

The elements of the vector space are called vectors and those of k are called

scalars.

Example 6.2.1 1) (R, +,.) is a R—vector space,
2) (C,+,.) is a C—wector space,
3) (C,+,.) is a R—wvector space,
4) If we consider R™ providded with the following two operations

(+):R*xR* — R™

((-rlax% ...,an) ) (ylay27 7yn)) - (331 + Y1, T2 + Y2, .-y Ty + yn)
():R*"xR* — R™"

()\ (ylvaa 7yn)) - ()\yla)\y27 7)\yn)
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6.2. Vector Espace

It can easily shown that (R",+,.) is a R—vector space.

Proposition 6.2.1 If F is a k—vector space, then we have the following prope-
ries :

1)Vx € E, Op.x = 0p.

2)Vr € E, (—1) . x =x

3) VA ek, \Og =0g

4)VA ek, Vr,ye EXA(z—y) = Aoz — Ay

S)VAek, Ve e E, \x =0 < XA =0x orz = 0p.

Definition 6.2.2 Let (E,+,.) be k—wvector space and let F' be non-empty sub set

of F. it is said that F' is vector subspace if (F,+,.) is also a k—wvector space.

Remark 6.2.1 1) When (F,+,.) is k—vector space of (E,+,.) then O € F.
2) If Og ¢ F, then (F,+,.) can’t be a k—vector space of (E,+,.).

Theoreme 6.2.1 Let (F,+,.) be k—uvector space and F' C E, F' non empty we
have the following equivalence :

1) F is a vector subspace of E.

2) F is stable by addition and by multiplication, i.e :

Vaek, Ve, ye F, Ax e Fandx+y € F
3)VA\ uek Ve, y e F, \x+ py € F, so

F#£2

F is a vector subspace <
Y\ pekVe,ye F, e+ py e F

Example 6.2.2 We pose F' = {(z,y) € R? : x —y =0} C R?, then F is a vector
subspace, indeed,

1) Og2 = (0,0) € F, because 0 —0 =0

2)VA\ ne RV (z,y),(x,y) € F, thenx —y =0, and 2’ —y' =0, so

Ao —y) +p(a" —y) = o+ pa’) = (g + py') = 0,
i.e, NM(z,y) + (2, y') € F, so F is vector subspace of RZ
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6.2. Vector Espace

Proposition 6.2.2 Tthe intersection of a non-empty family of vector subspaces

s a vector subspace.

Remark 6.2.2 Reuniting two vector subspaces is not necessarily a vector sub-

space.

Example 6.2.3 Let F, = {(z,y) e R? : 2 =0} and F» = {(z,y) e R* : y =0}

two vector subspaces in R%, [y U Fy is not a vector subspace, because

u1=(1,0) €F17U1: (0,1) GFQ andu1+u2:(1,1) ¢F1UF2

6.2.2 Sum of two vector subspaces

Definition 6.2.3 Let FE;, Ey two vector subspaces of k—wvector space E, it said
Sum of two vector subspaces, E1 and FEsy, which we note E1 + FEy the following
set :

E1+ Ey={x € E: 3z, € Ey,3x5 € Ey such that x = x1 + xa}

Example 6.2.4 Let’s By = {(z,y) € R?: 2 =0} and Fy = {(z,y) € R : y = 0}

two vector subspaces in R?, if (z,y) € R?, then

(z,y) = (0,y) + (2,0

€Eq S5
So (l',y) € El + EQ, then El + E2 = R2.

Proposition 6.2.3 The sum of two vector subspaces Ey and Es ( of the same

k—wvector space) is a vector subspace of E container Ey U Es, i, e,
EyUE, C Ey+ Ey

6.2.3 Direct sum of two vector subspaces

Definition 6.2.4 Let Ei, F5 two vector subspaces of the same k—vector space
E. It will be said that the sum E; & Es of two vector subspaces , is direct if
E1 N E2 = {O} . We write El D EQ.
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6.2. Vector Espace

Proposition 6.2.4 Let E1, F5 two vector subspaces of the same k—wvector space
E. The sum Ey + Es is direct if Vo € Ey + FEs, there is a single vector x1 € E1, a

single vector xo € Ey such that x = x1 + o

Example 6.2.5 Let’s F} = {(z,y,2) e R*: 2 =0} and Fy = {(z,y,2) ER®: y = 2 = 0}
two vector subspaces in R3.
1) Let (z,y,2) € R®, then

(z,y,2) = (0,y,2) + (2,0,0)

S (S

then (x,y,z) € Fy + Fy, hence Fy + Fy = R3.

2) Let (x,y,z) € F1 N Fy, then (z,y,2) € Fy and (x,y,2) € Fy, it means that
x=0andy=2=0, then (x,y,z) = Ogs, i,e, F1 N Fy ={0}.

Finally, we conclude that R® = [}, ® F,.

6.2.4 Generating families, free families and bases

Hereinafter, the vector space (E,+,.) will be designated by F.

Definition 6.2.5 Let E be a vector space and ey, es, ..., e, elements of E.

1) They say that{ey, ea, ..., e, } are free or linearly independent, if for all oy, ag, ..., cuy,
ck:

are1 +ases + ...+ ape, =0 = a1 =ay=... =, = 0

if they are not, they are said to be related.
2) They say that {e1, ea, ...,e,} is a generates family E, or that E is generated
by {617 €2, ...y en} Zf

Ve € E,Jay,an,...,a, €K, = =are; + ases + ... + aye,

3) If {e1,ea,....,e,} is a free and generates family of E, so {e1,e,...,e,} is
called a base of F.

Example 6.2.6 On R? we pose u; = (1,0), uy = (1,—1), then {us,us} is a base
of R2. Indeed

18



6.2. Vector Espace

i) {u1,us} is free. Yoq, a0 € R,

(qug + avug =0) = a1 (1,0) + a2 (1,—-1) = (0,,0)
= (a1 + a2, —ay) = (0,,0)

= a1 =ay;=0
ii) {uy, us} is generating. ¥ (z,y) € R?
(r,y) = aqug + agus = (g + g, —an) => as = -y €ER and oy =z +y € R,
then it existe aq, ag € R

Remark 6.2.3 In a vecctor space F, all non-zero vector is free.

Example 6.2.7 in all the polynomials of degree less than or equal to 2 with real

coefficients and with an indeterminate x
Ry [z] = {P(z) =a+bx +ca®:a,bceR}

then {p1(x) = 1,ps(z) = z, p3(x) = 22} is a base familly. Indeed
i) Let o, B,y € R, then

Vo € R:apy(z) + Bpa(x) +yp3(z) =0 Vo €R:a+ Br +vy22 =0

what gives a = =~ = 0, then then {1,z,2%} is a free family.
i1) Let P € Ry [x|, then it exists a,b,c € R, such that

Vo € R: P(x) = a+ bx + ca® = apy(x) + bpa(x) + cps(z)

i; €,

P = apy + bps + cp3

then {1,z,2?} is generating.

Proposition 6.2.5 If {ey,es,...,e,} and {uy,us, ..., un} are two bases of the vec-

tor space E, then n =m.
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6.2. Vector Espace

Remark 6.2.4 If a vector space E admits a base then all the bases of E have the
same number of elements (or same cardinal), this number does not depend on the

base but it depends only on the space E.

Definition 6.2.6 Let E be a k—wvectoriel space of base B = {ej, e, ...,e,}, The
dimension of E, denoted dim E, is the number defined by dim(E) = Card(B)
where Card(B) is the cardinal of B.

Example 6.2.8 We posee; = (1,0,0),e3 = (0,1,0),e3 = (0,0, 1), then {e1,e2,e3}

is a base of R3, so
dim (R?) = Card ({e1, e2,e3}) = 3
Example 6.2.9 On R, [z], the family {1,x, 2%} is a base of Ry |[z]
dimR; [z] = Card {1,2,2°} =3

Theoreme 6.2.2 Let E a vector space of dimension n, then

1) If{e1,eq,...;e,} is a base of E < {ey, e, ...,e,} is genetary < {e1, 2, ..., €, }
18 free.

2) If {e1, eq, ...,e,} are p vectors in E, with p = n, then {ey, e, ...,e,} cannot
be free, moreever si {e1,ea,...,e,} is generaty, then there are n parmis vectors
{e1,ea,...,e,} which form a basis E.

3) If {e1,ea,...,e,} are p vectors in E, with p < n, then {e1,ea,...,e,} can-
not be generaty, then it exist (n —p) vectors {e,i1,€pi2,...,en} on E suc that
{e1,€2,...,€p11,..,€,} is a basis for E.

4) If F be a vector subspace of E then dim F' < n, and more dimF =n < F =
E.
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6.3. Linear application

6.3 Linear application

6.3.1 Definitions

Definition 6.3.1 Let’s E and F two k—uvector spaces. An application [ of E on

F' 1s linear application if satisfies the following two conditions :

Vr,ye B, flx+y) = flz)+ fy)
Ve € B,V €k, f(Az) = Af(2)

where in an equivalent manner
Ve,ye B, VAek, fr+y)=Af(2)+ f(y)
Remark 6.3.1 The set’s of the linear application of E on F' denoted L (E,F).
Example 6.3.1 The application f defined by

f:R® — R?
(S(Z,y,Z)—>f(SC,y,Z) = (2$+y,y—2>

is a linear application. Indeed, let’s (z,y,2) ,(z',y',2') € R3 and A € R, we

have
fllz,y,2)+ ("¢, 2] = fle+a y+y,2+7)
= 2@+2)+y+y), (y+y’)—(2+2'))
= 2e+22+y+y,y+y —2z—-2")

2z +y)+ (22" +¢), (y — )+(?/—Z'))
2v +y,y —2)+ (20" + ¢,y — %)
= f(x,y,z)Jrf(x,y’,z')

(2
(
(
(
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6.3. Linear application

and
fINzy,2)] = fOz, Ay, Az) = 2 e + My, \y — A2) = (A 2z +y) , A (y — 2))
= AN2x+y,y—2)
= )‘f(xvya Z)

Remark 6.3.2 All the applications aren’t linear applications.

Definition 6.3.2 Let’s E and F are two k—wvector spaces, and let f € L(E,F).
They say that

1) f is an isomorphism of E on F, if f is bijective.

2) fis an endomorphism, if (E,+,.) = (F,+,.).

3) fis an autorphism, if f is endorphism and isomorphism.

Example 6.3.2 The application f defined by

f: R—=R
r — f(x)=—-2x

18 an automorphisme, Indeed, let x,y, A\ € R, we have

fOz+y) = -2\ +y) = X(=22) + (—2y) = M (z) + f(y)

and the application f s bijective, where

7t . R-R

r — ()= _71:15

Notation.

The null application, denoted Oz g r) is given by :
fE—F z— f(r)=0p

the identity application, noted idg is given by :

22



6.3. Linear application

idg: E— F, v —idg(x)=x

Proposition 6.3.1 Let f is a linear application of E on F, we have

1) f(0p) = 0p
2)Ve e E: f(—x) = —f(x)

Proof Let z € E, we have

1f(0r) = f(0x.0r)=0kf(0r) = Or,
2)f(—x) = f((=1).z)=(-1)f(z) =—f(z)

6.3.2 Kernel, image, and rank of a linear application

Definition 6.3.3 Let f be a linear application of E on F.
1) The set f(F) is called the image of the linear application f and is denoted
Im f i.e
Imf={f(z):z € E}
2) The set f~1({0}) is calledis the kernel of the linear application and is
denoted ker f i.e

kerf={x € B, f(z)=0s}
Example 6.3.3 Let f : R? — R be a linear application defined by
(,y) = flz,y) =2 —y

The kernel of the linear application f,

ker f = {(z,y) eR*:z—y=0}
= {(z,y) eR*:z =y}
= {z(1,1), z € R}
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6.3. Linear application

then the ker f is a vector subspace generated by e = (1,1) then it’s dimension
one, and its base is {e} .

The image of the linear application f,

Imf = {f(z,y): (z,y) € R*}
= {r-y(xy eR} =R

Proposition 6.3.2 Let f be a linear application of E on F.
1) Im f is a vector subspace of F.

2) ker f is a vector subspace of E.

Definition 6.3.4 Let f be a linear application of E in F', if dimIm f = n < 400,
then n its said the rank of f and and the note rg(f).

Proposition 6.3.3 Let f be a linear application of E in F'. we have the following
equivalences :

(i) f is surjective < Im f = F

(i1) f is injective < ker f = {0p}.

Example 6.3.4 Let f : R? — R? q linear application defined by
(z,y) = flz,y) = (y,2)

we have

Imf = {f(z,y):(z,y) e R?} = {(y,2) : (x,y) € R*}
= {y(1,0)+z(0,1): (z,y) € R*},

and
ker f = {(%’,y) € R?: (y,x) = ORQ} = {(070)}

then Im f = R2and ker f = {Op=}, then f is bijective.
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6.3. Linear application

6.3.3 linear application to finite dimension spaces

Proposition 6.3.4 Let ' and F two k—vector spaces and f and two linear appli-
cations of E in F. If E s finite dimension n and {e1, e, ...,e,} is a base of E,
then

Vi e {1,2,..,n}: f(ex) =g(ex) Ve e E: f(z) = g(x)

Proof the implication (<) is obvious.

For (=) we have E is generated by {ey, e, ..., €, }, donc
Vo € E, E')\l, )\27 ,)\n ek:z=Me+Nea+ ...+ )\nen,

as f and g are linears, then

f(l') = f()\lel + )\262 + ...+ )\nen) = )\f(el) + )\2f(€2) + ...+ )\nf(en)
g(x) = g(her+ Az + .. + Anen) = Ag(er) + Aag(ez) + ... + Ang(en)

so if we suppose that Vk € {1,2,....n} : f (ex) = g (ex) then we deduce
Vi e E, f(z) = g(x)
|

Example 6.3.5 Let f be an application of R? in R such that
f(l,O) =—1and f(07 1) = 47
then V (z,y) € R?, we have

fly) = fle(1,0)+y(0,1)] = 2f(1,0) +y(0,1)
= —o+4y
Proposition 6.3.5 Let f be a linear application of E in F with dimension of E
s finite, we have

dim F = dimker(f) 4+ dim Im(f)
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6.3. Linear application

Example 6.3.6 Let f be a linear application of R? in R defined by

f(z,y) = —2 + 5y

we have

ker(f) = {V(z,y) eR*: f(z,y) =0} = {(z,y) e R* : 2 = 5y}
= {y(5,1):y eR},

then dimker(f) =1 as dimR? = 1, then
dimIm(f) = dimR? — dimker(f) = 1

Proposition 6.3.6 Let f be a linear application of E in F with dim E = dim F' =

n. The following equivalences are then obtained

f is isomrphism < f is surjective < dimIm(f) = dim F
< f s injective < Im(f) = F
< dimker(f) =0 < ker(f) = {0}

Remark 6.3.3 Of this proposition, we deduce that f is isomorphism of E in F
with dim E finite then necessarily dim ' = dim F' in other words, if dim E # dim F’

then f cannot be an isomorphism.

Example 6.3.7 Let f : R? — R? defined by

f(a?,y) = (21‘_?/’1‘)

we have

ker(f) = {(z,y) €R*: f(z,y) =0}
= {(z,y) eR*: 20—y =2 =0}

= {(0,0)}
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6.3. Linear application

as dim f = 2 and ker(f) = {Og2}, then fis an isomorphism.

Exercise 1 We define in G = |—1, 1] the internal law * as follows

r+y

V(:z:,y)erG:a:*yzlery

Show that (G, %) is a commutatif group.

Solution
the law = is internal in |—1,1[. Indeed, let’s z,y € ]—1,1], let’s show that
xxy €|—1,1[. We have
Txy € }—1,1[<:>|x*y]<1<:>%<1
e |lztyl <|l+ayl e (@+y)° < (1+ay)
& x2(1—y2)—(1—y2)<0
& (1-2%)(1-9*) =0

as z,y € |—1,1[, then (1 — 2?) (1 — y?) = 0, hence z *y € |—1, 1| and then * is
an internaal law.
The law * is commutative : for all (z,y, z) € G*
r+y y+zx

k —= —_= = k
ey l+zy 1+4yx yEE

The law * is associative : for all (z,y,2) € G3

y—i—z) 9U+1y:yzz oyt ztayz

1+yz) 1+:z:f”jyzz C ltyztaoytaz

x*@*z):m(

and a similar calculation gives the same result for (z x y) * z.

The law * admits a neutral element, because for all = € |—1,1]

r+e

(xxe=1x) &< =rerv+e=ux(l+wze)
1+ zxe

& 2’e=c e e =0, because 2? # 1
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6.3. Linear application

then e = 0 is the neutral element for the law .

The element of G admits an inverse in GG. Let x € G, then

r+a
1+ za!

(zxa2' =e) e =0sz+r=02"=-2e]-1,1],

donc the inverse of = is —z, and then (G, %) is a ccommutatif groupe.

Exercise 2 Let E = {(v,y,2) eR¥:x4+y—22=20—y—2=0} a sub-set of
R3.
ow that E 1s a vector subspace o .
1) Show that E i b f R3
(2) Determine a family generates of E and extract a basis from it ¢
(3) Let F = {(z,y,z) € R* : v +y — 2 =0} a wvector subspace of R3.
(i) Determine a generates family of F?
(11) Have we E & F = R3?

Solution
(1) Let u=(x,y,2) € E, then
T+y z2=0 o T+y z - r=y
20 —y—2=0 3r — 3z = T =2z
S r=y=2z
then

E={(z,y,2) eR*:z =y =2z}
. Ogs € E, because 0 =0=0, so K # O.
. Let’'s u = (z,y,2) € E, v = (2,y,7) € E, so we have x = y = z and
=y =2 Let \,u € R, then

A+ v = N, y, 2) + p(a’,y, 2') = (M +pa', Ny + py', Az + u2’>
x/l y/l Z”

as A\ + ux’ = Ay + py' = Az + pZ, then " = 3"’ = 2" which shows that
A+ pv € B
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6.3. Linear application

(2) We have

E={(z,z,x):x e R} = {x(l,l,l) :xeR}

uy
then {u;} is a generates family of E, so {u;} is a base of E.

(3 —1i) Let (z,y,2) € F, then z = x + y, so

F=A{(z,y,x+y):z,y e R} = {x(l,O,l)—i—y(O,l,l) :x,yER}

u2 us

then {ug,us} is a generates family of F. Show that {ug,us} is free. Let’s
)\27 )\3 € Ra

)\2U2+)\3U3 = ORS = (/\27 )\37 )\2 + )\3) = (0, O, O) = )\2 = )\3 = 0,

so {us,us} is a base of F.

(3 —ii) As {uy} is a base of E, {ug,us} is a basis of F, then if {uy, us, ug} is
a basis of R?, we have E @ F = R3, since Card {uy, us,us} = dimR? = 3, vyou
just have to prove {us, ug, us} is free. Let Ay, Ay, A3 € R,

>\1U1 + /\2u2+)\3u3 = Ops = ()\2 + )\1, )\3 + )\1, )\2 + )\3) = (0, O, 0)
= AN =XN=X3=0

then {u1, up, us} is a basis of R3 so F® F = R3.
Exercise 3 We consider the application f : R? — R? defined by :
flz,y) = (x —y, -3z + 3y)

(1) Show that f is a linear application.
(2) Give a basis of its core and a basis of his image.
(3) Determine f o f.

Solution
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6.3. Linear application

(1) Let’s u = (z,y) € R?, v = (2,

flau+ Bo)
((ax — ay)
a(r —y,

which shows that f is linear.
(2) We have

(ax + pz’ — ay —
+ (Ba" = By) . (=3az + 3ay) +
04 3y) + B (o' — o3’ 1 3y") = of (u) + BF(0)

y') € R? and «, 8 € R, we have

f (x4 B’ ay + BY')

By, —3ax — 3B2" + 3oy + 38y')
(=3p2"+ 306y"))

ker(f) = {(e.y) €BY: flay) = 0}
= {(z,y) eR’:z—y=-3x+3y=0}
= {(&,y) eR®:x =y}
= {z(1,1): z € R},
so {u1} is a basis of ker(f).
{ (x,y) €R3}
= {(z—y,—3z+3y): (z,y) € R*}

{

(1,-3): xy)ER?’}

-3): )\ER}—{ (1, —3):)\ER}

then {us} is a basis of Im(f).
(3) Let (z,y) € R?, then

(fof)(@y) = f(f(x))

((z—y) -
= (x
(

:f(l’_ya

y + 3z — 3y,
dr — 4y, —12 + 12y)

u2

—3x + 3y)
(=3z+3y),—3(x—y)+3(=3z+3y))
-3z 4+ 3y — 9z + 9y)
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6.3. Linear application

Exercise 4 Let f : R3 — R3defined by :
flzyy,2)=(—2c4+y+z,0—-2y+z,0+y—22)

(1) Show that f is a linear application.
(2) Give a basis of ker(f) and deduce dim (Im(f))
(3) Give a basis of Im(f).

Solution
(1) Let’s u=(z,y,2) € R® v = (2',y,2) € R® and o, 8 € R, we have

flau+ Bv) = (ax+ B2’ ay+ By, az+ 52
= (—2ax =202 + ay + By + az + a2, ax + B2’ — 2ay — 28y + az + B2, ax + Sr
= ((=2azx + ay + az) + (=282" + By’ + 52'), (ax — 2ay + az) + (82" — 28y + B2')
= a2r+y+tz,r—2y+z,x+y—22)+8 (=22 +y +2, 2 -2+ 2 +y -2
= af(u)+pf[)

then f is linear.

(2) We have

ker(f) = {(z,y,2) € R’: f(2,y,2) = 0}
= {(z,y,2) eER®: 20 +y+z=0-2y+z=0+y—22=0}

Then
—2x+y+z2=0 —2x+y+2=0
(x,y,2) € ker(f) < r—y+z2=0 & —3z+32=0
r+y—22=0 r4+y—22z=0
& r=yY=2z,
So

ker(f) = {(z,y,2) eR®*:x =y =2}
= {x(l,l,l):xER}

u1
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6.3. Linear application

then {u;} is basis of ker(f), and then
dim (Im (f)) = dimR® — dim ker(f) = 3 — Card {u,} = 2
(3) We have

Im(f) = {f<x7y7 Z) : (l’,y, Z) € Rg}

= {x(—Q, L) +y(1—2,1)+2(1,1,-2) : (z,y,2) € R3}

V1 V2 v3

Then {v; ve,v3} is a generates family, as vy + v3 = —v3 and dim (Im(f)) = 2,

then {v; v} is generates family, show that {vy v3} is free. Let Ao, A3 € R,

AUg + A3v3 = Ops = (—2>\2 + )\3, Ay — )\3, Ao + )\3) = (0, 0, 0)
= Ay = )\3 =0

so {vg,v3} is a basis of Im(f).
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