Sciences and Technology Department

 1^{st} year :2025-2026

Series 2 : Sequences of real numbers

Exercise 1: 1. Study the convergence of the following sequences:

a.
$$U_n = \sqrt{n^2 + n + 1} - \sqrt{n}$$
 b. $U_n = \frac{3^n + (-3)^n}{3^n}$ c. $U_n = \left(1 + \frac{2}{n}\right)^n$

b.
$$U_n = \frac{3^n + (-3)^n}{3^n}$$

c.
$$U_n = \left(1 + \frac{2}{n}\right)^n$$

2. Show that the following sequence is bounded.

$$U_n = \frac{2 + \cos(n)}{3 - \sin\sqrt{n}}, \quad \forall n \in \mathbb{N}$$

Exercise 2: Consider the sequence (U_n) defined by :

$$\begin{cases} U_0 = \frac{3}{2} \\ U_{n+1} = (U_n - 1)^2 + 1 \end{cases}$$

- 1. Show that : $1 < U_n < 2, \forall n \in \mathbb{N}$.
- 2. Study the monotonicity of $(U_n)_{n\in\mathbb{N}}$.
- 3. Deduce that (U_n) is convergent and determine its limit.

Exercise 3: Let the sequence $(U_n)_{n\in\mathbb{N}^*}$ be defined by:

$$U_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$$

Consider two sequences (V_n) and (W_n) defined by : $V_n = U_{2n}$, $W_n = U_{2n+1}$.

- 1. Show that (V_n) and (W_n) are adjacent.
- 2. Deduce that the sequence (U_n) is convergent.

Exercise 4: Consider the sequences (U_n) and (V_n) , $n \in \mathbb{N}$, defined by:

$$\begin{cases} U_0 = 2, & U_1 = \frac{4}{9}, \\ U_{n+2} = \frac{1}{27} (12U_{n+1} - U_n), \end{cases}$$

and $V_n = U_n - \frac{1}{3^n}, \quad \forall n \in \mathbb{N}.$

- 1. Show that for all $n \in \mathbb{N}$: $U_{n+1} = \frac{1}{9}U_n + \frac{2}{3n+2}$.
- 2. Show that the sequence (V_n) is a geometric sequence, then write U_n in terms of n
- 3. Write in terms of n the sum : $S_n = \sum_{k} U_k$