1^{st} year :2024-2025

Series 1

$\underline{\text{Exercise 1}}$:

- 1. Show that : $\forall x, y \in \mathbb{R}, x^2 + y^2 = 0 \iff x = y = 0.$
- 2. Show that : $\forall x, y \in \mathbb{R}$, $x \neq 2 \land y \neq 2 \Longrightarrow 2x xy + 2y 2 \neq 2$.
- 3. Show that : n is prime $\implies n = 2 \lor n$ is odd

Exercise 2 :

- 1. Show by contradiction that : $\forall x \in \mathbb{R} : x \notin \mathbb{Q} \Longrightarrow 1 + x \notin \mathbb{Q}$.
- 2. Show by induction that : $\forall n \ge 0$, $6^n + 9$ is a multiple of 5.

Exercise 3 :

Consider the following four assertions :

- (a) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y > 0.$ (b) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y > 0.$ (c) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y > 0.$ (d) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^2 > x.$
- 1. Are the assertions a, b, c and d true or false?
- 2. Give their negation.

Exercise 4 :

In \mathbb{R} , we define the relation \mathcal{R} by :

$$x\mathcal{R}y \Longleftrightarrow x^2 - y^2 = x - y.$$

- 1. Show that \mathcal{R} is an equivalence relation in \mathbb{R} .
- 2. Calculate the equivalence class of an element x of \mathbb{R} .

Exercise 5 :

Le $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the application defined by $f(x) = x^2 + 1$. Consider the sets $A = [-3, 2], \quad B = [0, 4].$ Compare the sets $f(A \cap B)$ and $f(A) \cap f(B)$.

Exercise 6 :

Let $f : \mathbb{R} \mapsto \mathbb{R}$ be the application defined by $f(x) = x^2$ and A = [-1, 4]. Determine :

- a) Direct image of A by f.
- b) Reciprocal image of A by f.

$\underline{\text{Exercise 7}}$:

Let $g: \mathbb{R} \setminus \{\frac{1}{2}\} \to \mathbb{R}^*$ be the application such that :

$$g(x) = \frac{9}{2x - 1}$$

Show that g is a bijection. Determine its reciprocal application.

Additional exercises

Exercise 1 : Show that : [n is odd] $\iff [n^2 \text{ is odd }]$

Exercise 2 :

- 1. Let be the application $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ and A = [-1; 4]. Determine : (a) The direct image of A by f.

 - (b) The reciprocal image of A by f.
- 2. What is the direct image of sets : \mathbb{R} , $[0, 2\pi]$, $[0, \frac{\pi}{2}]$, and the reciprocal image of sets [0, 1], [3, 4], [1, 2]by application $\sin(x)$.