
 2

 Ministry of Higher Education and
Scientific Research

 وزارة التعليم العالي و البحث العلمي

 Amen-جامعة باجي مختار

 BADJI MOKHTAR-ANNABA UNIVERSITY

 Faculty of Technology-Department of Computer Science

COURSE: Programming tools for mathematics

Specialty: Computer Science

LMD 1st year

Presented

By

PrrHAFIDI Mohamed

 Academic year 2024-2025

 3

Foreword

Since the 1970s, the use of calculation software has become absolutely essential in the scientific

field, for technicians, engineers, and researchers alike. Matlab was developed by Mathworks. It

is one of the most popular scientific programming languages. This handout, entitled

"Programming Tools for Mathematics," is intended for students in the S2 semester of the first

year ofdegree (computer science department) from Badji Mokhtar University, Annaba. He was

taught at the departmentfrom (2013). The format of this course is composed of 4 sessions of 4

hours of lectures associated with 4 sessions of 4 hours of practical work and is available at the

address: https://sites.google.com/site/mhhafidi/.

https://sites.google.com/site/mhhafidi/
https://sites.google.com/site/mhhafidi/

 4

Chapter 1: General Information and Getting Started

This chapter introduces the programming method in MATLAB. It includes all the basic concepts

that the student needs to know. Topics covered include variables, numbers, main functions, main

commands, and many other concepts.

1.1 Introduction

MATLAB (MASTriceLABoratory) is an interactive programming environment for scientific

computing, programming, and data visualization. It is widely used in engineering and scientific

research, as well as in higher education institutions. Its popularity is due primarily to its strong

and simple user interaction, but also to the following points:

• Its functional richness: With MATLAB, it is possible to perform complex mathematical

manipulations by writing few instructions. It can evaluate expressions, draw graphs and

execute classic programs. And above all, it allows the direct use of several thousand

predefined functions.

• The possibility of using toolboxes: which encourages its use in several disciplines

(simulation, signal processing, imaging, artificial intelligence, etc.).

• The simplicity of its programming language: a program written in MATLAB is easier to

write and read compared to the same program written in C or PASCAL.

• Its way of handling everything as matrices, which frees the user from worrying about data

typing and thus avoiding typecasting problems.

MATLAB was originally designed to do calculations mainly on vectors and matrices, hence its

name 'MastriceLaboratory', but later it was improved and expanded to be able to deal with many

more areas.

MATLAB is not the only scientific computing environment available, as there are other

competitors, the most prominent of which are MAPLE and MATHEMATICA. There are even

free software clones of MATLAB, such as SCILAB and OCTAVE.

1.2. The Matlab interface

Currently MATLAB is at version7.xand at startup it displays several windows. Depending on

the version we can find the following windows:

• Current Folder: indicates the current directory and existing files.

• Workspace: indicates all existing variables with their types and values.

• Command History: keeps track of all commands entered by the user.

• Command Window: we use to formulate our expressions and interact with MATLAB.

Figure I.1 presents the window we use throughout this chapter.

 5

Figure I.1.The Matlab desktop

1.2.1 Basic tools

• The easiest way to use MATLAB is to write directly in the Command Window just after the

cursor (prompt)>>

• If we want an expression to be calculated but without displaying the result, we add a

semicolon ';' at the end of the expression

• To create a variable we use the simple structure: 'variable = definition' without worrying

about the type of the variable.

• It is possible to write multiple expressions in the same line by separating them with commas

or semicolons.

• A variable name must only contain alphanumeric characters or the symbol '_' (underscore),
and must start with an alphabet. We also need to be careful with capital letters because
MATLAB is case sensitive (HASAndhasare two different identifiers).

The basic operations in an expression are summarized in the following table:

The operation The meaning

+ The bill

- Subtraction

* Multiplication

/ The division

 6

\ The left division

^ The power

' The transposed

(And) Parentheses specify the order of evaluation

To see the list of variables used, either look at the window 'Workspace'either we use the

commands 'whos'Or 'who'.

whosgives a detailed description (the name of the variable, its type and its size), on the other

handwhojust gives the names of the variables.

1.2.2. Numbers

MATLAB uses conventional decimal notation, with an optional decimal point '.' and the '+' or

'–' sign for signed numbers. Scientific notation uses the letter 'e' to specify the scaling factor as

a power of 10. Complex numbers use the characters

'i' and 'j' (interchangeably) to designate the imaginary part.

MATLAB always uses real numbers (double precision) to perform calculations, which
allows for calculation accuracy up to 16 significant digits. However, the following points
should be noted:

• The result of a calculation operation is by default displayed with four digits after the decimal

point.

• To display more numbers use the commandlong format(14 digits after the decimal point).

• To return to the default display, use the commandshort format.

• To display only 02 digits after the decimal point, use the commandbank format.

• To display numbers as a ratio, use the commandrat format.

The functionvpacan be used to force the calculation to present more significant decimals by

specifying the number of decimals desired.

1.2.3. The main constants

MATLAB defines the following constants:

The constant Its value

pi =3.1415...

exp(1) e=2.7183...

i = √−1

I = √−1

Inf ∞

NaN Not a Number

eps ε ≈ 2 × 10−16

1.2.4 Main functions

Among the frequently used functions, in the table below we can note the following:

The function Its meaning

sin(x) the sine of x (in radians)

cos(x) the cosine of x (in radians)

 7

tan(x) the tangent of x (in radians)

donkey(s) the arcsine of x (in radians)

acos(x) the arc cosine of x (in radians)

atan(x) the arctangent of x (in radians)

sqrt(x) the square root of x

abs(x) the absolute value of x

exp(x) = ex

log(x) natural logarithm of x

log10(x) logarithm to base 10 of x

image(s) the imaginary part of the complex number x

real(x) the real part of the complex number x

round(x) round a number to the nearest whole number

floor(s) round a number to the smallest integer

eye(s) round a number to the nearest whole number

rem(m,n) remainder of the integer division of m by n

lcm(m,n) least common multiple of m and n

gcd(m,n) greatest common divisor of m and n

factor(n) prime factorization of n

conj(z) conjugate of z

angle(z) argument of z

abs(z) Module of z

1.2.5 The main commands

MATLAB offers many commands for user interaction. We're sticking with a small set for now,

and we'll introduce others as the course progresses.

The order Its meaning

who Displays the names of the variables used

whos Displays information about the variables used

clear xy Deletes the variables x and y

clear, clear all Delete all variables

clc Clears the command screen

exit, quit Close the MATLAB environment

Long format displays numbers with 14 digits after the decimal

point

Short format displays numbers with 04 digits after the decimal

point

Bank format displays numbers with 02 digits after the decimal

point

Rat format displays numbers as a ratio (a/b)

1.3 Training exercises:

1. Translate the following MATLAB instructions into mathematical expressions.

>>Y= 12*sqrt(2)*cos(2*pi*f*t-3*pi/4) >>T= exp(2-sqrt(b^3-1/a))

 8

>>Z= exp(sqrt(3*n^2+log(n/5)) >> S=abs(2*n^5-3)/sqrt(4*n^2+log(6*n))

2. Translate the following mathematical expressions into MATLAB instructions:

 9

Chapter 2: Vectors

MATLAB was originally designed to allow mathematicians, scientists, and engineers to easily

use the mechanics of linear algebra. We first introduce vectors and then matrices, which are very

intuitive and convenient in MATLAB.

2.1. Description

A vector is an ordered list of elements. If the elements are arranged horizontally, the vector is

said to be a row vector; if the elements are arranged vertically, it is said to be a column vector.

To create aline vectoryou just have to write the list of its components in brackets[] and separate

them with spaces or commas as follows:

To create acolumn vectoryou just have to write the list of its components in brackets[] and

separate them with semicolons (;) as follows:

Or to calculate the transpose of a row vector:

If the components of a vector X are ordered with consecutive values with a step

(increment/decrement) different from 1, we can specify the step with the

>> v = [1 3.4 5 - 6]

v =
1.0000 3.4000 5.0000 - 6,0000

>> U = [4 ; - 2 ; 1]
U =

4
- 2

1

>> U = [4 - 2 1]'
U =

4
- 2

1

 10

We can write more complex expressions like:

>> V = [1:2:5 , -2:2:1]

V =

1 3 5 -2 0

>> A = [1 2 3]

A =

1 2 3

>> B = [A, 4, 5, 6]

B =

1 2 3 4 5 6

2.2 Addressing and indexing

Accessing the elements of a vector is done using the following general syntax:vector_name

(positions),Orpositions: can be a simple number, or a list of numbers (a vector of positions).

Parentheses(And)are used for consultation.

The hooks[And]are used only during creation.

Examples:
Order Meaning Example with:

V = [5, -1, 13, -6, 7]

>> V(3) 3rd position years = 13

>> V(2:4) From second position to fourth years = -1 13 -6

>> V(4:-2:1) From the 4th position to the 1st with step = -2 years = -6 -1

>> V(3:end) From 3rd position to last years = 13 -6 7

>> V([1,3,4]) 1st, 3rd and 4th position only years = 5 13 -6

>> V(1) = 8 Give the value 8 to the first element V = 8 -1 13 -6 7

>> V(6) = -3 Add a sixth element with the value -3 V = 8 -1 13 -6 7 -3

>> V(9) = 5 Add a ninth element with the value 5 V = 8 -1 13 -6 7 -3 0 0 5

>> V(2) = [] Delete the second item V = 8 13 -6 7 -3 0 0 5

>> V(3:5) = [] Delete from 3rd to 5th element V = 8 13 0 0 5

2.3 Operations between vectors

With two vectors u and v, it is possible to perform the following operations:

The operation Meaning Example with:
>> u = [-2, 6, 1] ;
>> v = [3, -1, 4] ;

following notation:

P for example :

X = [value - initial: increment: value - final]

x = [0 : pi / 10 : pi]% [value >> - initial: increment: value - final]
x =
Columns 1 through 7
0 0.3142 0.6283 0.9425 1.2566 1.5708 1.8850
Columns 8 through 11
2.1991 2.5133 2.8274 3.1416

 11

+ Addition of vectors >>

u+2years =

0 8 3>>

u+vyears =

1 5 5

- Subtraction of vectors >> u-2years

= -4 4 -1>>

uvyears = -5

7 -3

.* Element-by-element multiplication >> u*2years

= -4 12 2>>

u.*2years = -

4 12 2

 >> u.*vyears

= -6 -6 4

./ Element-by-element division >> u/2
years = -1.0000 3.0000 0.5000
>> u./2
years = -1.0000 3.0000 0.5000
>> u./v
years = -0.6667 -6.0000 0.2500

.^ Power element by element >>
u.^2years =
4 36 1>>
u.^v
years = -8.0000 0.1667 1.0000

2.4 Special functions

Here are some of the most used functions related to vectors:

Order Meaning

Linspace (start, end, number of

elements)

The creation of a vector whose

components are ordered by regular

intervals and with a well-defined

number of elements

Sum(V) The sum of the elements of a vector

V

prod (V) The product of the elements of a

vector V

mean (V) The average of the elements of a

vector V

fate (V) Orders the elements of vector V

in ascending order

length(V) the size of the vector V

max(V) largest element of vector V

min(V) Smallest element of vector V

fliplr(V) reverses the order of the elements of vector

V

2.5 Training exercises

 12

1. Given two vectorsx= (x1, x2, . . . , xn) Andy= (y1, y2, . . . , yn), write a program giving

the vectorz= (z1, z2, . . . , zn) whose component numberiis that of the two numbers11,yiwhich

is the largest in absolute value.

2. Create a row vector where the first element is 1, the last element 33 with an increment

of 2 between elements: (1, 3, 5,......,33).

3. Create a column vector in which the first element is 15; the elements decrease with an

increment of -5, and the last element is -25. (Note: A column vector can be created by

transposing a row vector)

 13

Chapter 3: Matrices

The basic element for MATLAB is a matrix with complex elements. Thus, any real number is

considered a one-row, one-column matrix whose only element has a zero imaginary part. A

vector is simply a one-row or one-column matrix. Vectors are also used to represent polynomials

and strings. Multidimensional arrays are matrices concatenated along certain directions.

3.1 Description

A matrix is a rectangular array of elements (two-dimensional). Vectors are matrices with a single

row or column (one-dimensional). To insert a matrix, follow these rules:

• Items must be enclosed in brackets[And]

• Spaces or commas are used to separate items in the same line

• A semicolon (or the keyenter) is used to separate lines Examples:

>> A = [1,2,3,4; 5,6,7,8; 9,10,11,12];

>> A = [1 2 3 4 ; 5 6 7 8 ; 9 10 11 12] ;

>> A = [1,2,3,4

5,6,7,8

9,10,11,12] ;

>> A=[[1;5;9] , [2;6;10] , [3;7;11] , [4;8;12]] ;

A matrix can be generated by vectors as shown in the following examples:

Order Meaning Result

>> x = 1:4 creation of a vector x x = 1 2 3 4

>> y = 5:5:20 creation of a vector y y = 5 10 15 20

>> z = 4:4:16 creation of a z vector z = 4 8 12 16

>> A = [x ; y ; z] A is formed by the row vectors

x, y and z

A =

1 2 3 4

5 10 15 20

4 8 12 16

>> B = [x' y' z'] B is formed by the column

vectors x, y and z

B =

1 5 4

2 10 8

3 15 12

4 20 16

>>C = [x ; x] It is formed by the same

line vector x 2 times

C =

1 2 3 4

1 2 3 4

3.2 Addressing and indexing

It is useful to note the following possibilities:

• Access to a line elementiand the columnIis done by:A(i,j)

• Access to the entire line numberiis done by:A(i,:)

• Access to the entire number columnIis done by:A(:,j)

Examples:

 14

Order Meaning Example with:

A = [1,2,3,4;5,6,7,8;

9,10,11,12]

>> A(2,3) the element on the 2nd row in the 3rd

column

years = 7

>> A(1,:) all elements of the 1st line years = 1 2 3 4

>> A(:,2) all elements of the 2nd column years =

2

6

10

>> A(2:3,:) all elements of the 2nd and 3rd row years =
5 6 7 8
9 10 11 12

>> A(1:2,3:4) The upper right sub-matrix of size 2x2 years
= 3 4
7 8

>> A([1,3],[2,4]) the submatrix: rows (1,3) and columns

(2,4)

years
= 2 4
10 12

>> A(:,3) = [] Delete the third column A =

1 2 4

5 6 8

9 10 12

>> A(2,:) = [] Delete the second line A =

1 2 4

9 10 12

>> A = [A, [0;0]] Add a new column with A(:,4)=[0;0] A =

1 2 4 0

9 10 12 0

>> A = [A ;

[1,1,1,1]]

Add a new line with

A(3,:)=[1,1,1,1]

A =

1 2 4 0

9 10 12 0

1 1 1 1

The dimensions of a matrix can be acquired using the functionsize.

Example :

Order Meaning Result

>> d = size(A) the variabledcontains the

dimensions of matrix A as a

vector.

d =

3 4

>> d1 = size(A, 1) d1 contains the number of

lines (m)

d1 =

3

>> d2 = size(A, 2) d2 contains the number of

columns (n)

d2 =

4

 15

3.3 Special functions

The following table shows some of the most used functions regarding matrices:

The function Meaning

zeros(n) Generates an n × n matrix with all elements = 0

zeros(m,n) Generates an m × n matrix with all elements = 0

ones(n) Generates an n × n matrix with all elements = 1

ones(m,n) Generates an m × n matrix with all elements = 1

eye(n) eye(n) Generates an n × n identity matrix

magic(n) Generates a magic matrix of dimension n × n

rand(m,n) Generates an m × n matrix of random values

det Calculating the determinant of a matrix

inv Calculates the inverse of a matrix

rank Calculates the rank of a matrix

trace Calculates the trace of a matrix

eig Calculates the eigenvalues

dowry Calculates the scalar product of 2 vectors

norm Calculates the norm of a vector

cross Calculates the vector product of 2 vectors

diag Returns the diagonal of a matrix

diag(V) Creates a matrix with vector V on the diagonal and 0 elsewhere.

tril Returns the lower triangular part

trio Returns the upper triangular part

3.4 Operations on matrices

Element-by-element operations on matrices are the same as those for vectors (the only condition

necessary to perform an element-by-element operation is that the two matrices have the same

dimensions). On the other hand, multiplying or dividing matrices requires some constraints

(consult a course on matrix algebra for more details).

Examples:

>> A=ones(2,3) A =

1 1 1

1 1 1

>> B=zeros(3,2) B =

0 0

0 0

0 0

>> B=B+3 B =

3 3

3 3

3 3

>> A*B years
= 9 9
9 9

 16

>> B=[B , [3 3 3]'] B =

 3 3 3

3 3 3

3 3 3

>> B=B(1:2,:) B =

3 3 3

3 3 3

>> A=A*2 A =

2 2 2

2 2 2

>> A.*B years =
6 6 6
6 6 6

>> A*eye(3) years =
2 2 2
2 2 2

3.5 Training exercises

of A.

- Create a three-element column vector namedvb which contains the elements of the fourth

column of A.

- Create a 10-element column vector namedvc which contains the elements of the first and

second rows of A.

- Create a 6-element column vector namedvd which contains the elements of the first and

fifth columns of A.

1 . Use the zeros, ones, and eye commands to create the following arrays:

2. Create the following matrix A:

Use matrix A to:
- Create a column vector of 5 lines named go which contains the elements of the second line

 17

Chapter 4: Programming in Matlab

We have seen so far how to use MATLAB to perform commands or to evaluate expressions by

writing them in the command line (After the prompt>>), therefore the commands used are

usually written as a single instruction (possibly on a single line). However, there are problems

whose solution description requires several instructions, which requires the use of several lines.

For example, finding the roots of a second-degree equation (taking into account all possible

cases).

A well-structured collection of instructions designed to solve a given problem is called a

program. In this part of the course, we will introduce the mechanics of writing and executing

programs in MATLAB.

4.1. General information

4.1.1 Comments

Comments are explanatory sentences ignored by MATLAB and intended for the user to help

them understand the commented part of the code.

In MATLAB a comment begins with the symbol%and occupies the rest of the line. For example:

 >>A=B+C ; % Give A the value of B+C

4.1.2 Reading data into a program

To read a value given by the user, it is possible to use the commandinput, which has the

following syntax:

Variable = input('an indicative sentence')

When MATLAB executes such an instruction, the hint sentence will be displayed to the user

while waiting for the user to enter a value. For example:

 >> A = input('Enter an integer: ')

 Enter a whole number: 5

A =

 5

 >> B = input('Enter a row vector: ')

 Enter a row vector: [1:2:8,3:‐1:0]

B =

 1 3 5 7 3 2 1 0

4.1.3 Writing Data to a Program

To display the value of a variable, we can use the functionavailable, and which has the following

syntax:

>>disp (object)

The object value can be a number, vector, matrix, string, or expression.

4.2.Logical and relational operators

The following operators are used to compare different variables:

 18

The comparison operator meaning

== legality

~= inequality

> greater than

< less than

>= greater than or equal to

<= less than or equal to

The logical operator

& THEAndlogic

| THEOrlogic

~ therenegationlogic

Comparing vectors and matrices is somewhat different from scalars, hence the usefulness of the

two functions 'equal' And 'isempty' (which allow a concise answer to be given for comparison).

The function Description

equal tests whether two (or more) matrices are

equal (having the same

elements everywhere). It returns1if so,

and0Otherwise.

isempty tests whether an array is empty

(contains no elements). It returns1if so,

and0Otherwise.

To better understand the impact of these functions, let's follow the following example:

Order meaning execution

>> A = [5,2;- 1,3] Create matrix A A = 5
2
1 3

>> B = [5,1;0,3] Create matrix B B =

5 1

0 3

>> A==B Test if A=B? years
= 1 0
0 1

>> equal(A,B) Test whether A and B are

actually equal

years = 0

>> C=[] ; Create the empty matrix C

>> isempty(C) Test if C is empty years =1

>> isempty(A) Test if A is empty years = 0

 19

4.3 Control structures

Control flow structures are instructions that define and manipulate the order of execution of

tasks in a program. They provide the ability to perform different processing depending on the

state of the program's data, or to create repetitive loops for a given process.

4.3.1 Selection - if . . . end and if . . . else . . . end

– if(boolean expression)/script/ end

– if(boolean expression)/script if true/ else /script if fake /
end

The / symbol replaces one of the separator symbols: comma (,), semicolon (;), or line break. The

use of the semicolon is strongly recommended to avoid often redundant displays.

Example :

>> m = -1;

>> if (m<0), a = -m, end

When there are more than two alternatives, the following structure can be used:

>> age = input('Enter your age: '); ...

if (age < 2)

disp('You are a baby')

elseif (age < 13)

disp('You are a child')

elseif (age < 18)

disp ('You are a teenager')

elseif (age < 60)

disp ('You are an adult')

else

disp ('You are an old man')

end

4.3.2. Switch construction. . . box

The instructionswitchexecutes groups of statements based on the value of a variable or

expression. Each group is associated with a clausecasewhich defines whether this group should

be executed or not depending on the equality of the value of thiscasewith the evaluation result

For example, the following program defines you according to your age:

if (exp 1)

script1 (evaluated if exp 1 is true)
elseif (exp 2)

script2 (evaluated if exp 2 is true)
elseif (exp 3)

. . .
else

script (evaluated if none of the expressions exp1, exp2, . . . is not true)

end

 20

of the expression ofswitch. If all thecasehave not been accepted, it is possible to add a

clauseotherwisewhich will be executed only if nocaseis not executed. So the general form of

this instruction is:

switch (selector)

case value 1, . . . / script 1 /

case Value 2, . . . / script 2 /

. . . otherwise / script end

As in the previous definitions, the / symbol replaces a separator: comma (,), semicolon (;) or line

break.selectordenotes an expression whose values can correspond to the values associated with

the different case values. When the selector value corresponds to a case value, once the

corresponding script is executed, execution continues immediately after the end, unlike what

happens in some languages. This explains the absence of a break after each script.

Example :

>> n = 17

>> switch rem(n,3) % remainder of dividing n by 3

case 0, disp('Multiple of 3')

case 1,
disp('1 modulo 3')

case 2, disp('2 modulo 3')

otherwise, disp('Negative number')

end

4.3.3 Conditional Iteration - while . . . end

The instructionwhilerepeats the execution of a group of instructions an indeterminate number

of times depending on the value of a logical condition. It has the following general form:

while (boolean expression) / script / end

The symbol / represents, as in the previous definitions, a separator: comma (,), semicolon (;) or
line break. On the other hand, the use of variables should be avoidediAndIas indices since they
are predefined variables whose value is sqrt(−1).

Example :

>> n = 1 ;
>> while (2^n <= 100)

n = n + 1;
end

>> disp(n - 1)

 21

4.3.4. Repetition - for . . . end

The instructionforrepeats the execution of a group of instructions a fixed number of times. It

has the following general form:

for (k = list) / script / end

Example 1:

Example 2:

It is possible to exit a for or while loop directly using the break command:

Example :

 >> EPS = 1;

 >> for (n = 1 : 100)

 EPS = EPS / 2;

 If ((EPS + 1) <= 1)

 EPS = EPS*2 break end end >>
n

The test (EPS + 1) <= 1 causes the for loop to exit at 52thiteration. In the following

example, table A is the one from example 2.

>> for (l = 1 : 3)
for (k = 1 : 3)

if (A(l,k) == 10)
[l,k]

break
end

end
end

>> x = [];

>> for (k = 1:5), x = [x, sqrt(k)], end

>> for (l = 1 : 3)

for (k = 1 : 3)
A(l,k) = l^2 + k^2 ;

end

end

>> available

(A

)

 22

The double loop did not stop after the test A(l,k) == 10 was validated when l=1 and k=3.
Indeed breakcauses the nearest loop to exit, here the inner for loop. A corrected version of
the previous test could be the following with two breaks to be able to exit the two for loops:

4.5. Scripts

A script is a sequence of expressions or commands. A script can extend over one or more lines.

Individual expressions or commands must be separated by a comma, a semicolon, or the line

break symbol consisting of three periods . . .

followed by<enter>(the role of the three points and inhibiting the evaluation mechanism during

a line break). As with a single expression, typing<enter>triggers the evaluation process.

Expressions are evaluated in the order in which they are written. Only the value of expressions

followed by a comma or a line break is displayed; the value of expressions followed by a

semicolon is not.

Example :

 >> a = .5, 2*a, save a, b = pi; 2*b, c = a*b

 >> years

Writing a script is quite tedious, so MATLAB allows you to save the text of a script as a text

file calledm-files, due to their extension.

4.5.1 Creating m-files

THEm-filesallow scripts to be saved as text files and are used in particular to define new

functions (a large part of MATLAB's predefined functions are stored asm-filesin the matlab

toolbox).

THEm-filescan be created by any editor. In recent versions of MATLAB there is a small built-

in editor that can be called from the file menu or from the command window menu bar.

In the editor window type the following lines:

% script - test . m

a = .5;

b = pi;

c = a * b

Save the file in the working directory as test.m.

>> output = 0;
>> for (l=1:3)
if (exit)
break
end
for (k = 1:3)
if (A(l,k) == 10)
[l,k]
output = 1 ;
break
end
end
end

 23

4.5.2 Running an m-file

To run the script contained in am-fileand just type the name of this m file in the command

window followed by< enter >

4.6. Functions

We've seen a number of predefined functions. It's possible to define your own functions. The

first method allows you to define simple functions on a command line. The second, much more

general, method allows you to define very advanced functions by defining them in a file.

4.6.1 Inline functionsExample

:

Let's say I want to define a new function that I call sincos defined mathematically by: sincos(x)

= sin x − x cos x

We will write:

 >> sincos = inline('sin(x)-x*cos(x)')

 since =

 Inline function:

 sincos(x) = sin(x) -x*cos(x)

We can now use this new function:

>> sincos(pi/12)

years =

0.0059

Now let's try to apply this function to an array of values:

>> sincos(0:pi/3:pi)

??? Error using ==> inline/subsref

Error in inline expression ==> sin(x)-x*cos(x)

??? Error using ==> *

Inner matrix dimensions must agree.

It doesn't work. MATLAB tries to multiply x row vector by cos(x) also row vector in the sense

of matrix multiplication! Therefore you have to use a term-by-term multiplication.* in the

function definition:

>> essay

 24

4.6.2 Functions defined in a file

This is the most general method, and it allows you to create functions with multiple outputs.

Let's start by using the previous example (sincos). The order of operations is as follows:

1. Edit a new file called sincos.m

2. Type the following lines:

function s = sincos(x)

s = sin(x)-x.*cos(x);

3. Save

The result is the same as before:

Now let's see how to define a function with multiple outputs. We want to create a function called

cart2pol that converts Cartesian coordinates (x, y) (inputs of thefunction) in polar coordinates

(r,) (function outputs). Here is the content of the cart2pol.m file:

 function [r, theta] = cart2pol (x, y)

 r = sqrt(x.^2 + y.^2); theta
= atan(y./x);

 end

Note that the two output variables are enclosed in brackets and separated by a comma.

To use this function, we would write for example:

>> sincos = inline('sin(x) - x.*cos(x)')

since =
Inline function:

sincos(x) = sin(x) - x.*cos(x)

>> sincos(0:pi/3:pi)
years

=

00.34241.91323.1416

>> sincos(pi/ 12)
years

=

0.0059

 25

We therefore simultaneously assign two variables rr and tt to the two outputs of the function, by

putting these two variables in brackets, and separated by a comma. The brackets here do not

have the same meaning as for arrays.

It is possible to retrieve only the first output of the function. MATLAB often uses this principle

to define functions with a "main" output and "optional" outputs.

So, for our function, if only one output variable is specified, only the polar radius value is

returned. If the function is called without an output variable, ans takes the polar radius value:

Inside functions like the one we just wrote, you are allowed to manipulate three types of

variables:

– The function's input variables. You cannot change their values. – The

function's output variables. You must assign them a value.

– Local variables. These are temporary variables used to break down
calculations, for example. They only have meaning within the function and will not
be "seen" from the outside.
Now let's imagine you write a command file and a function (in two different files, of course),

with the command file using the function. If you want to pass a value from the command file to

the function, you normally have to pass it through an input to the function. However, sometimes

you'd like the variable A in the command file to be usable directly by the function. To do this,

you use the global directive.

4.7 Training exercises

1. Write a Matlab script program that creates a square matrix of order n such that each element

on and above the main diagonal is equal to the product of the column number and the row

number. Elements below the diagonal are equal to zero.

2. Given a matrix A of any dimensions, write a function which returns as output variables a

vector consisting of the strictly positive elements of A as well as the number of non-zero

elements of A.

3. You have a correlation giving theCP of a gas as a function of temperature:

Cp(T) = AT3+ BT2+ CT + D

- Create a Matlab script that uses theCp function having 5 inputs: T, A, B, C, D.

- But it is more natural for this function to have only T as input.How to pass A, B, C,

D which are constants?

>> [rr,tt] = cart2pol(1, 1)
rr =

1.4142
tt =

0.7854

>> cart2pol(1, 1)
years

=

1.4142

 26

 Chapter 5: Graphical Representation under Matlab

MATLAB, in addition to allowing you to perform very high-level numerical calculations, can
also produce impressive 2D or 3D graphics. To get a brief overview of MATLAB's graphical
capabilities, you can access graphics demos.

 >> Matlab graphics demo

In this chapter, we will present the basic principles essential for drawing curves in MATLAB.

5.1 The plot command

The orderplot allows you to plot a set of coordinate points (xi,yi),i=1, ..., N. The syntax is

plot(x,y) where x is the vector containing the valuesxi on the abscissa and y is the vector

containing the valuesyi in ordinate. Of course, the x and y vectors must be of the same dimension,

but they can be row or column vectors. By default, the points (xi,yi) are connected to each other

by straight line segments.

Here for example is another way to plot the graph of the functionh(x) = x sin(x)between -2 and

2 .

>> x=[-2*pi:0.01:2*pi]; y = x.*sin(x);

>> plot(x,y)

Also try:

 >> x=[-2*pi:1:2*pi]; y = x.*sin(x);

 >> plot(x,y)

In this example we have defined a vector x of equally distributed values between -2 and 2 (with

a step of0.01 in the first case and1 in the second case) and the image was calculated by the

functionh of these values (vector y). We display the points with coordinates (x(i), y(i)).You can

specify to MATLAB what the color of a curve should be, what the line style should be and/or

what the symbol should be at each point (xi,yi). To do this, we give a third input parameter to

the plot command which is a 3-character string of the form'cst' withc designating the color of

the line,s the dot symbol andtthe type of line. The possibilities are as follows:

Curve color Representation of points Curve Style

the character its effect the character its effect the character its effect
bOrblue blue curve . a point ‐ online full

gOrgreen green curve o a circle : dotted

rOrred curve in red x the symbolx ‐. in dot dash

cOrcyan between green

and blue
+ the symbol+ ‐‐ in dash

mOrmagenta in red
bright purplish

* a star*

 27

yOryellow yellow curve s a square

kOrblack black curve d a diamond

 v triangle

 lower

 ^ upper triangle

 < left triangle

 > right triangle

 p pentagram

 h hexagram

The default values are c = b, s = .and t = - which corresponds to a solid blue line connecting the

points together. It is not mandatory to specify each of the three characters. You can specify just

one or two. The others will be the default values. The commandgrid allows you to obtain a grid

of the figure.

It is possible to plot multiple curves on the same figure by specifying multiple x1, y1, x2, y2, ...

arrays as parameters to the plot command. If you want the curves to have a different appearance,

you can use separate color and/or line style options after each pair of x, y vectors.

Example: We plot on the interval [-5, 5] the functionx² cos(x)in solid blue line and the functionx

cos(x) in red dotted line.

 >> x = [-5:0.01:5];

>> y = x.^2.*cos(x); z = x.*cos(x); >> plot(x,y,'b-
',x,z,'r:');

5.2 Improving the readability of a figure

5.2.1 Captioning a figure

In a figure, it is better to put a textual description helping the user to understand the meaning
of the axes and to know the purpose or interest of the visualization concerned.
It is also very interesting to be able to indicate significant locations or points in a figure by a

comment indicating their importance. - To give a title for the horizontal x-axis, we use the

functionxlabellike this:

 >> xlabel('This is the X-axis')

- To give a title for the vertical y-axis, we use the functionylabellike this:

 >> ylabel('This is the Y axis')

- To give a title to a figure containing a curve we use the functiontitlelike this:

>> title('figure title')

 28

- To write a text (message) on the graphics window at a position indicated by the

coordinatesxAndy, we use the functiontextlike this:

 >> text(x, y, 'This point is important')

- To place a text on a position manually chosen by the mouse, we use the functiongtext,

which has the following syntax:

>> gtext('This point is chosen manually')

- With these commands, it is possible to display a value contained in a variable in the

middle of text. To do this, we construct a string table by converting the value contained in the

variable into a string using the commandnum2str.

Example :

 >>title(['Example number', num2str(numex)]).

The following example illustrates the use of the different commands for labeling a figure.

>> P = 5;

>> t = [0:.01:2];

>> c = 12*exp(-2*t) - 8*exp(-6*t);

>> plot(t,c); grid

>> xlabel('time in minutes')

>> ylabel('concentration in grams per

 liter')

>> title(['evolution of the concentration of the

 product', num2str(P), ...

'over time'])

 >> gtext('maximum concentration')

5.2.2 Displaying multiple curves in the same window

It is possible to display several curves in the same graphics window using the commandhold on.

The results of all graphics instructions executed after calling the commandhold on will be

superimposed on the active graphics window. To restore the previous situation (the result of a

new graphics instruction replaces the previous drawing in the graphics window) typehold off.

For example, to draw the curve of the two functions cos(x) and sin(x) in the same figure, we can

write:

 >> x=0:pi/12:2*pi;

 >> y1=cos(x);

 29

 >> y2=sin(x);

>> plot(x,y1,'b‐o')

>> hold on

>> plot(x,y2,'r‐s')

There are therefore two ways of superimposing several curves on the same figure.

- We can either give several pairs of abscissa/ordinate vectors as arguments to the plot

command,

- or use the hold on command. Depending on the context, one of these solutions will be

preferred over the other.

5.2.3 Saving a figure

The print command allows you to save the figure of a graphics window to a file in various image

formats. The syntax of the print command is:

print -f<num> -d<format> <ficname>

where

• <num> denotes the number of the graphics window. If this parameter is not specified,

the active window is taken into account.

• <ficname> is the name of the file in which the figure is saved. If no name extension is

given, a default extension is added to the file name depending on the chosen format (.ps

for PostScript, .jpg for jpeg, for example).

• <format> is the format in which the figure is saved. There are many such formats. You

can get the complete list by typing help plot. The main ones are:

Format Meaning

ps Black and white PostScript

PSC Color PostScript

eps Black and white Encapsulated PostScript

EPSC Color Encapsulated PostScript

jpeg JPEG image format

tiff TIFF image format

5.3 The fplot Command

The orderfplot allows you to plot the graph of a function over a given interval. The syntax is:

fplot('nomf', [xmin, xmax])

where: namef is either the name of a built-in MATLAB function, an expression defining a

function of the variable x, or the name of a user function.

• [xmin, xmax] is the interval for which the graph of the function is plotted.

 30

5.4 The subplot command

It is possible to split a window into sub windows and display a different figure on

each of these sub windows using the subplot command. The syntax is subplot(m,n,i)

where

• m is the number of sub-windows vertically;

• n is the number of sub-windows horizontally;

• i is used to specify which sub-window the display should be in. The windows are

numbered from left to right and from top to bottom.

The following example illustrates the use of the subplot command.

 >> figure

 >> subplot(2,3,1), fplot('cos',[0 4*pi]), title('cosine'), grid

 >> subplot(2,3,2), fplot('sin',[0 4*pi]), title('sinus'), grid

 >> subplot(2,3,3), fplot('tan',[-pi/3 pi/3]), title('tangent'), grid

 >> subplot(2,3,4), fplot('acos',[-1 1]), title('arc-cosine'), grid

 >> subplot(2,3,5), fplot('asin',[-1 1]), title('arc-sine'), grid

 >> subplot(2,3,6), fplot('atan',[-sqrt(3) sqrt(3)]), title('arc-tangent'), grid

5.5 The bar command

The MATLAB language not only allows the display of points to plot curves, but also
offers the possibility of plotting bar graphs and histograms.
To plot a bar graph we use the function bar which has the same operating principle as the

function plot.

Example :

 >> X=[2,3,5,4,6]; >>
Y=[1,4,5,2,1]; >> bar(X, Y)

It is possible to change the appearance of the sticks, and there is the function barh
which draws the sticks horizontally, and the functionbar3which adds a 3D effect.
Among the very interesting drawing functions not presented (due to lack of space)
we can find:history,stairs,stem,magpie,pie3, ...etc. (which we encourage you to
study).

We also note that MATLAB allows the use of a coordinate system other than the

Cartesian system such as the polar coordinate system (for more details look for the

functions compass, polar And pink).

5.6 Training exercises

1. Consider the following two functions: 𝑓

 31

- Give the MATLAB instructions necessary to plot the curve of the function f(x) with a

variation of x from 0 to 2π, and a step size = π/12.

- Give the MATLAB instructions necessary to plot the curve of the function g(x) with a

variation of x from -5 to 5, and a step size = 0.2.

- How to draw the curve of f(x) in green dotted line with diamond-shaped points? and
How to draw the curve of g(x) in blue dashed line with square-shaped points?
2. Represent the graph of the function

 32

Chapter 6: Polynomials

Polynomial calculus is the basis of many scientific fields, including digital and analog signal

processing, process control, function approximation, and curve interpolation.

6.1 Description

Polynomials are treated as coefficient vectors in Matlab.

For example, the polynomial equation p(x) = x2- 6x + 9 will be represented by the following

vector:

The number of elements in the vector is equal to the degree of the polynomial + 1.

The main problems with polynomials are:

• the search for roots;

• the assessment;

• adaptation to data.

6.1.1 Roots of a polynomial

The approximate calculation of polynomial roots is performed in Matlab with the roots

command.

 >> roots (P)

 years =

3.0000 + 0.0000i

 3.0000 - 0.0000i

6.1.2 Evaluation of polynomials

To evaluate a polynomial at a point, we use the function polyval. Let's try to

find the value of the polynomial P at 1.

6.1.3 Determining a polynomial from these roots

The coefficients of a polynomial can be determined from its roots using the function poly.

For example, we are looking for the polynomial which has roots: 1, 2 and 3.

These can be defined as the elements of a vector r.

>> P = [1 - 6 9]

P =

 1 - 6 9

>>

po

Polyval(P, 1)
years

=

4

 33

The desired polynomial is then:

Which corresponds to:K(x) = x3– 6x2+ 11x – 6.

We check that the roots of the polynomial K are 1, 2 and 3.

6.2 Graphical representation

To plot the graphical representation of the polynomial K (x), Let us define a domain for the

variable x which contains the roots of K.

Domain of values of the variablex and evaluation of the polynomial K:

 >> x = 0:0.1:4;

 >> y = polyval(K, x);

Plot the function y = K(x):

 >> plot(x,y)

>> grid on

 >> title ('plot of y = x^3 - 6x^2 + 11x -6')

>> xlabel('x')

>> ylabel('y')

6.3 Operations on polynomials

6.3.1 Multiplication
Multiplication of two polynomials can be done easily with MATLAB.Let two

polynomials P1 And P2 defined by:

P(x) = x + 2

P2 (x) = x2– 2x + 1

>> r = [1 2 3]

r =

1 2 3

>> K = poly (r)

K =
1 - 6 11 - 6

>> roots = roots (K)

roots =
3,0000

2,0000

1.0000

 34

The result of multiplying P1 by P2 is the polynomial P3 which is obtained with the function

conv.

 >> P3 = conv(P1, P2)

 P3 =

 10-32

6.3.2 The division

The division of two polynomials is done by the function deconv. The quotient Q and the rest R

of the division can be obtained as an element of an array.

By dividing P3 by P1, we find

the polynomial P2 (the

remainder R is zero).

6.3.3 Polynomial integration

The function polyint returns the coefficients q of the primitive Q(x) of the polynomial P(x):

 >> Q = [1 2 0 -3]

 Q =

 1 2 0 -3

>> polyint(Q)
 years =

0.2500 0.6667 0 -3.0000 0

>> P1 = [1 2]

P1 =
1 2

>> 2 P [1 = - 1] 2
P2 =

1 - 2 1

R is the zero polynomial if the division is exact.

1) >> [Q, R] = deconv (P2, P
Q =

1 - 4
R =

0 0 9

>> [Q, R] = deconv (P3, P 1)
Q =

1 - 2 1
R =

0 0 0 0

 35

6.3.4 Polynomial derivation

The function polyder returns the coefficients q of the polynomial Q(x) derived from P(x):

6.4 Polynomial interpolation:

MATLAB interpolates data by a polynomial.

Given vectors X = [-1 0 2] and Y = [0 -1 3], the above command determines the best polynomial

interpolation of degree 2 at the points (-1,0), (0,-1) and (2,3).

 >> p2 = polyfit(X,Y,2);

6.5 Training exercise:

1. Write a program that calculates the derivative and roots of a user-inputted polynomial and then
draws their graphs on an interval containing all the roots. Hint: Do not use the polyder command.

2. Run the following program:

 x = 0:.1:3*pi ;
 y = sin(x); p =
polyfit(x, y, 5)
 figure(1); clf
 plot(x,y) hold on

 xx = 0:.001:3*pi ;

plot(xx, polyval(p,xx), 'r-')

>> Q = [1 2 0 - 3]
Q =

2 0 1 - 3

polyder(Q) >>
years

=

3 4 0

 36

Chapter 7: Character Strings

Although MATLAB is a high-level, object-oriented scientific computing language, it also
offers capabilities for processing strings, dates, and times. For more information on MATLAB
string functions, you can consult the online help (help strfun).

7.1 Description

A chain A string is an ordered sequence of characters (text, for example).

In Matlab, the chains of characters are specified between 'simple quote', for example:

 >> 'toto'

 >> 'The result is:'

 >> 'the apostrophe' %to put an apostrophe you must double the single quote

7.2 String Manipulation

7.2.1 Concatenation
The assembly of two or more chains of characters is called concatenation. One way to perform

concatenation in Matlab is to use the brackets []. For example,

 >> ['The result of ' , 'multiplication' , ' is given below.']

 >> debut_phrase = 'The result of ';

 >> end_phrase = 'is given below.';

 >> operation = 'multiplication';

 >> complete_phrase = [start_sentence, operation,
end_sentence]

7.2.2 Extracting a piece of the character string

Elements of a can be accessed chain of characters in the same way as for a vector.

 >> alphabet = 'abcdefghijklmnopqrstuwxyz'; >>
alphabet(1) % 1st letter of the alphabet

 >> alphabet (5:10) % from 5th to 10th

If the elements to be extracted are of indefinite size but separated by a particular character. We

can divide the chain of characters using the regexp function. Example:

 >> listCourse = 'tomatoes 300gr, radishes 200gr, butter 250gr';

We divide the chain at the comma level

 37

Multiple separators can also be specified between brackets (\s is the special character for space)

 >> splitList2 = regexp(ListCourse, '[,\s]', 'split')

7.2.3 Tests on character strings

We will use the ischar function to check that a variable contains a chain of characters:

 >> a = '1';
 >> ischar(a) %true
 >> a = 1;
 >> ischar(a) %false

We will use the isempty function to check that a chain is not empty:

>> a = 'abcd';

>> ischar(a) %yes

>> isempty(a) %non

>> a = '';

>> ischar(a) %yes

>> isempty(a) %yes

>> a = [];

>> ischar(a) %non

>> isempty(a) %yes

>> a = [1,2];

>> ischar(a) %non

>> isempty(a) %non

The strcmp function allows you to compare two chains of characters. It returns 1 (true) if both chains
are identical and 0 (false) otherwise.

 >> strcmp('toto', 'toto') %true
 >> strcmp('toto', 'titi') %false
 >> str1 = 'foo'; str2 = 'tutu';
 >> strcmp(str1, str2) %false
 >> strcmp(str1, 'toto') %true
 >> strcmp(str2, 'toto') %false

>> splitList = regexp(CourseList, ',' , 'split');

>> splittedList {1}
>> splittedList {2}

>> splittedList {3}

 38

7.3. Functions specific to character strings

Function Meaning Example

abs Converting strings to

numbers

>> abs('MATLAB')

years =776584766566

double Transforms a string into

double-precision

numeric format

>> String='MATLAB';

>> Double=double(String)

Double =776584766566

str2double Converts the number to

a string as a double-

precision number

>> Ch1='123';>> str2double(Ch1)
years =123

bin2dec Converts a binary

number in string form to

its decimal value

>> bin2dec('0111')

years =7

hex2num This function provides a
conversion of a number
written in IEEE
hexadecimal form
(string) to a double float
precision

>> hex2num('400921fb54442d18')

years =3.1416

hex2dec Converting a
hexadecimal number
(written as a string) into
an integer.

>> hex2dec('F89')

years =3977

tank Converts an array of
non-negative integers to
characters (the first 127
are the ASCII codes for
those characters).

>> char([776584])years =
MAT

setstr Conversely, knowing
the ASCII codes of the
characters in a string,
we can obtain the
character string
corresponding by the

setstr function

>> Code=abs('SIMULINK')

Code =837377857673

7875

>> setstr(Code)

years = SIMULINK

 39

num2str Transforms a number

into a string.

>> ch1 = 'MATLAB';

>> Version = 2009;

 >> String = [ch1, 'Version', 'R',
num2str(2009),'a']
Chain = MATLAB Version R2009a

mat2str Transforms the numeric
matrix into a string.

>> MatString=mat2str([5 4 7; 8 4 2; 6 0

8])

MatString = [5 4 7;8 4 2;6 0 8]

str2num Transforms a number
seen as a string into a
number.

>> Ch='1+3.14'>> str2num(Ch)
years =4.1400

int2str Converts an integer to a
string.

>> int2str([23 56;21 9])

years =2356
219

dec2hex Converting an integer to
a hexadecimal number
given as a string.

>>
dec2hex(77)years =
4D

dec2bin Converts the given
integer argument to
binary as a string.

>> dec2bin(3)

years = 11

isspace Returns 1 if the
character is a space and
0 otherwise.

>> isspace('Mat lab')
years =0001000

isstr returns 1 if the argument

is a string and 0

otherwise

>> isstr('MATLAB is a language of

high-level programming')

years =1

 40

isletter Returns an array of 0s

and 1s; 1 for letters of

the alphabet including

letters with accents, and

0 for the rest of the

characters

>> String=['è5f87';'çyéfg']

>> isletter(String)

years =

10100

11111

strcat Concatenates a

sequence of strings

given as arguments.

>> strcat('MATLAB','R2009a')

years = MATLAB R2009a

strvcat Vertical concatenation
of character strings,
independently of their
lengths.

>> strvcat('MATLAB &

SIMULINK','R2009a')

years =

MATLAB

R2009a

strcmpi Compares strings
ignoring upper and
lower case.

>>

TestIdent=strcmpi('MATLAB','matlab')

TestIdent =1

findstr Research of a

chain in another

>> String1='TLAB';

>> String2='MATLAB';

>> findstr(String1, String2)

years =3

strfind Looks for clues where
one string is within
another.

>> findstr(String2,'A')years
=25

upper Transforms

respectively a string

in uppercase letters

>> Shift=upper('MATlab')

Shift = MATLAB

lower Transforms

respectively a

lowercase string

>> Minus=lower('MATlab')

Minus = matlab

Ch =

strrep(Ch1,Ch2,Ch3)

replaces all occurrences
of the string Ch2 in Ch1
with thechain Ch3.

>> Ch=strrep('This is an average level
example','average','very good')
Ch =

This is an example of a very good level

 41

strtrim

Removes spaces before
the string.

>> String='MATLAB R2009 and

SIMULINK'

>> String2=strtrim(String)

Chain2 =

MATLAB R2009 and SIMULINK

strtok Returns the first word of
a string, plus the rest.
Fields are separated by a
delimiter, which
defaults to a space.

>> String = 'MATLAB R2009a';

>> [FirstWord, rest] = strtok(String)

FirstWord = MATLAB

remainder = R2009a

evaluation Evaluating a string >> x = [2*pi pi/3; pi/2 -1]

>> String = 'exp(-det(sin(x)))'

 container of the

orders

MATLAB,

 operations and

variable names

>> eval(String)

years =2.3774

poly2str Returns a polynomial as
a
character string

>> p=poly2str([1 -2 4],'x')p

=x^2 - 2 x + 4

7.4 Training exercises

• A palindrome is a word or phrase that can be read from left to right or vice versa. We

propose to write a Matlab script that determines whether a string is a palindrome. The

solution would be to reverse the string and compare it with the original string.

• Write a Matlab script that extracts day, month, and year information from a date as a

string with the formats 'dd-mm-yy' or 'dd/mm/yy'.

	Amen-جامعة باجي مختار
	1.1 Introduction
	1.2. The Matlab interface
	1.2.1 Basic tools
	1.2.2. Numbers
	1.2.3. The main constants
	1.2.4 Main functions
	1.2.5 The main commands

	1.3 Training exercises:
	Chapter 2: Vectors

	2.1. Description
	2.2 Addressing and indexing
	2.3 Operations between vectors
	2.4 Special functions
	2.5 Training exercises
	Chapter 3: Matrices

	3.1 Description
	3.2 Addressing and indexing
	Example :

	3.3 Special functions
	3.4 Operations on matrices
	3.5 Training exercises
	Chapter 4: Programming in Matlab

	4.1. General information
	4.1.1 Comments
	4.1.2 Reading data into a program
	Variable = input('an indicative sentence')

	4.1.3 Writing Data to a Program
	4.2.Logical and relational operators
	4.3 Control structures

	4.3.1 Selection - if . . . end and if . . . else . . . end
	Example :

	4.3.2. Switch construction. . . box
	4.3.3 Conditional Iteration - while . . . end
	4.3.4. Repetition - for . . . end

	4.5. Scripts
	4.5.1 Creating m-files
	4.5.2 Running an m-file

	4.6. Functions
	4.6.1 Inline functionsExample :
	4.6.2 Functions defined in a file

	4.7 Training exercises
	Cp(T) = AT3+ BT2+ CT + D

	5.1 The plot command
	5.2 Improving the readability of a figure
	5.2.1 Captioning a figure
	5.2.2 Displaying multiple curves in the same window
	5.2.3 Saving a figure

	5.3 The fplot Command
	5.4 The subplot command
	5.5 The bar command
	5.6 Training exercises
	Chapter 6: Polynomials

	6.1 Description
	6.1.1 Roots of a polynomial
	6.1.2 Evaluation of polynomials
	6.1.3 Determining a polynomial from these roots

	6.2 Graphical representation
	6.3 Operations on polynomials
	6.3.1 Multiplication
	6.3.2 The division
	6.3.3 Polynomial integration
	6.3.4 Polynomial derivation

	6.4 Polynomial interpolation:
	6.5 Training exercise:
	Chapter 7: Character Strings

	7.1 Description
	7.2 String Manipulation
	7.2.1 Concatenation
	7.2.2 Extracting a piece of the character string
	7.2.3 Tests on character strings

	7.3. Functions specific to character strings
	7.4 Training exercises

