Algebra 1 Course

Neggal Bilel

22 septembre 2025

Algebra 1

Teacher of lessons: Dr. Neggal Bilel

Contact: bilel.neggal@univ-annaba.dz

Coefficient: 03

Credits: 05

Time per week: 01:30 hours lessons and 01:30 hours TD

Evaluation method : Exam $\times 0, 6 + TD \times 0, 4$.

Lesson Plan:

- 1. Mathematical Logic.
- 2. Sets, Applications and Binary relations.
- 3. Algebraic structures.
- 4. Polynomials.

References:

- 1. M. Mignotte et J. Nervi, Algèbre : licences sciences 1ère année, Ellipses, Paris, 2004.
- 2. J. Franchini et J. C. Jacquens, Algèbre : cours, exercices corrigés, travaux dirigés, Ellipses, Paris, 1996.
- 3. C. Degrave et D. Degrave, Algèbre 1ère année : cours, méthodes, exercices résolus, Bréal, 2003.
- 4. S. Balac et F. Sturm, Algèbre et analyse : cours de mathématiques de première année avec exercices corrigés, Presses Polytechniques et Universitaires romandes, 2003.

chapitre 1				
		MATHEM	IATICAL.	LOGIC

1.1 Logic

1.1.1 Concept of proposition

Définition 1.1. A proposition is a mathematical expression which is either true or false, and it cannot be true and false at the same time.

Exemple 1.1. 1. "1+2=3 " is a true proposition.

- 2. "5 is an even number" is a false proposition.
- 3. " $\sqrt{2}$ is not a rational number." is a true proposition.
- 4. " n divides 8 " is not a proposition, because it depends on the value of n.

Remarque 1.1. — A proposition is usually denoted by a capital letter such as P, Q, or R."

- We write 1 for a true proposition and 0 for a false proposition.
- For several propositions, we use a truth table to show all possibilities.

Exemple 1.2. 1. For one proposition, there are two possibilities:

Р
1
0

2. For two propositions, there are four possibilities:

Р	Q
1	1
1	0
0	1
0	0

1.1.2 The negation of a proposition

Définition 1.2. The negation of P is written as $\neg P$ or \bar{P} . It is true when P is false, and false when P is true. The truth table is:

P	\bar{P}
1	0
0	1

Table 1.1 – Table de vérité de \bar{P}

Exemple 1.3. 1. P:"2 is a prime number". (true proposition)

 \bar{P} : " 2 is not a prime number ". (false proposition)

2. $Q: "3 > 5". (false\ proposition)$

 \bar{Q} : "3 \leq 5". (true proposition)

Remarque 1.2. The negation of the negation of P is the same as P. So : $\bar{P} = P$

1.1.3 Logical connectives

Let ${f P}$ and ${f Q}$ be two logical propositions.

The conjunction

Définition 1.3. "The conjunction of P and Q is written $(P \wedge Q)$. It is true only when both P and Q are true. The truth table is:

Р	Q	$P \wedge Q$
1	1	1
1	0	0
0	1	0
0	0	0

Table 1.2 – Table de vérité de $P \wedge Q$

Exemple 1.4. P: "2 is an even number" (true)

Q: "2 is a prime number "(true)

Then: $P \wedge Q$: "2 is an even number and 2 is a prime number" (true).

The disjunction

Définition 1.4. The disjunction of P and Q is written $(P \vee Q)$. It is true if at least one of P or Q is true. It is false only if both are false. The truth table is:

P	Q	$P \vee Q$
1	1	1
1	0	1
0	1	1
0	0	0

Table 1.3 – Table de vérité de $P \vee Q$

Exemple 1.5. P: " 4 is a multiple of 2" (true)

Q : " 4 is a multiple of 3 "(false)

Then : $P \lor Q$: " 4 is a multiple of 2 or 4 is a multiple of 3" (true).

Implication

Définition 1.5. The implication of P and Q is written $(P \Rightarrow Q)$. It means "If P then Q". It is false only when P is true and Q is false; in all other cases it is true. The truth table is:

Р	Q	$P \Rightarrow Q$
1	1	1
1	0	0
0	1	1
0	0	1

Table 1.4 – Table de vérité de $P \Rightarrow Q$

Exemple 1.6. P : "x = 2"

 $Q : "x^2 = 4"$

 $P \Rightarrow Q$: "if x = 2, then $x^2 = 4$ " (true).

Remarque 1.3. The implication $(P \Rightarrow Q)$ is equivalent to the proposition $(\bar{P} \lor Q)$.

Equivalence

Définition 1.6. The equivalence of two propositions P and Q is the proposition writen $(P \Leftrightarrow Q)$. It is true when P and Q are both true or both false, and false in all other cases. It can also be defined as:

$$(P \Leftrightarrow Q) \equiv (P \Rightarrow Q) \land (Q \Rightarrow P)$$

The truth table is:

Р	Q	$P \Leftrightarrow Q$
1	1	1
1	0	0
0	1	0
0	0	1

Table 1.5 – Table de vérité de $P \Leftrightarrow Q$

Exemple 1.7. *P* : " *x* is even. "

Q: " x is divisible by 2."

 $P \Leftrightarrow Q$: " x is even if and only if x is divisible by 2" (true).

Propriété 1.1. Let P, Q and R be three logical propositions, then:

1. Commutativity of \land and \lor :

$$P \wedge Q \Leftrightarrow Q \wedge P$$

$$P \lor Q \Leftrightarrow Q \lor P$$

2. Associativity of of \land and \lor :

$$(P \wedge Q) \wedge R \Leftrightarrow P \wedge (Q \wedge R)$$

$$(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$$

3. Distributivity

$$P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge Q)$$
$$P \vee (Q \wedge R) = (P \vee Q) \wedge (P \vee Q)$$

4. De Morgan's Laws

$$\overline{(P \wedge Q)} \Leftrightarrow (\bar{P} \vee \bar{Q})
\overline{(P \vee Q)} \Leftrightarrow (\bar{P} \wedge \bar{Q})$$

1.1.4 The Quantifiers

Universel quantifier "\forall "

— **Symbol**: ∀ (read as "for all" or "for every").

$$\forall x \in E, P(x)$$

— **Meaning**: The proposition P(x) holds for all elements of the set E.

Exemple 1.8. The proposition: $\forall z \in \mathbb{C}, |z| = 1$ (false), because for z = 2i we have $|z| = 2 \neq 1$.

Existential quantifier "∃"

— **Symbol**: \exists (read as "there exists").

$$\exists x \in E, P(x)$$

— **Meaning**: There is at least one element in the set E that satisfies the proposition P(x).

Exemple 1.9. The proposition : $\exists x \in \mathbb{R}, x + 2 > 5$ (true), because for x = 4 we have x + 2 = 6 > 5.

Remarque 1.4. — $Symbol : \exists ! (read as "There exists a unique").$

$$\exists ! x \in E, P(x)$$

— **Meaning**: There exists a unique element in the set E that satisfie the proposition P(x).

Exemple 1.10. The proposition : $\exists ! x \in \mathbb{R}, x^2 = 0$ (true), because for x = 0 we have $0^2 = 0$.

the negation of quantifiers

- 1. Negation of the universal quantifier " $\forall x \in E, P(x)$ " is : " $\exists x \in E, \bar{P}(x)$ ".
- 2. Negation of the existential quantifie " $\exists x \in E, P(x)$ " is : " $\forall x \in E, \bar{P}(x)$ ".

Exemple 1.11. 1. The negation of the proposition " $\forall x \in \mathbb{R}, e^x > 0$ "(true)

is: "
$$\exists x \in \mathbb{R}, e^x \leq 0$$
" (false).

2. The negation of the proposition " $\exists x \in \mathbb{R}, x+2=3$ "(true) is: " $\forall x \in \mathbb{R}, x+2 \neq 3$ "(false).

1.2 Types of Reasoning

In this section, we present the different types of mathematical reasoning.

1.2.1 Direct reasoning

To prove $(P \Rightarrow Q)$ is true.

- 1. Assume that p is true.
- 2. Use p to show that q must be true.

Exemple 1.12. Show that if $n \in \mathbb{N}$ is even, then $\Rightarrow n^2$ is even.

- Assume that n is even, i.e., $\exists k \in \mathbb{Z}, n = 2k$.
- Then

$$n^2 = 2(2k^2) \Rightarrow n^2 = 2k'$$

with $k' = 2k^2 \in \mathbb{Z}$ so $\exists k' \in \mathbb{Z}, n^2 = 2k', n^2$ is even.

1.2.2 Reasoning by contrapositive

Reasoning by contrapositive is based on the following equivalence : $(P \Rightarrow Q) \Leftrightarrow (\bar{Q} \Rightarrow \bar{P})$. So, to prove that $(P \Rightarrow Q)$ is true, it is enough to prove the contrapositive : $(\bar{Q} \Rightarrow \bar{P})$ directly : we assume \bar{Q} is true and then show that \bar{P} is true.

Exemple 1.13. Show that : if n^2 is odd, then $\Rightarrow n$ is odd.

- Contrapositive: if n is even, then $\Rightarrow n^2$ is even.
- Easy to prove (see previous example) \rightarrow so the original statement is true.

1.2.3 Proof by contradiction

To prove $(P \Rightarrow Q)$ by contradiction : assume P is true and Q is false, and show that this leads to a contradiction.

Exemple 1.14. Let a, b > 0. Show that : $\frac{a}{1+b} = \frac{b}{1+a} \Rightarrow a = b$.

Démonstration. Assume that : $\frac{a}{1+b} = \frac{b}{1+a}$ and $a \neq b$. then :

$$a(1+a) = b(1+b)$$
 and $a \neq b \Rightarrow a-b+a^2-b^2 = 0$ and $a \neq b$
 $\Rightarrow (a-b)(a+b) = 0$ and $a \neq b$
 $\Rightarrow (a=b)$ because $(a+b) > 0$ and $a \neq b$

We get a contradiction. Then : $\frac{a}{1+b} = \frac{b}{1+a} \Rightarrow a = b$.

1.2.4 Proof by Induction

To prove $P(n): \forall n \in \mathbb{N}, n \geq n_0$, do the following::

- 1. Prove $P(n_0)$ is true.
- 2. Assume P(n) is true for an arbitrary $n \geq n_0$.
- 3. Using the hypothesis, prove P(n+1) is true. Then: by induction, P(n) holds for every $n \ge n_0$.

Exemple 1.15. Show that : $\forall n \in \mathbb{N}^*, 1 + 2 + ... + n = \frac{n(n+1)}{2}$

1. For n = 1, P(1) is true $1 = \frac{1(2)}{2}$.

2. Assume that
$$: 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$$
 is true.

3. Show that
$$: 1 + 2 + \ldots + (n+1) = \frac{(n+1)(n+2)}{2}$$
 is true. We have $:$

$$1+2+\ldots+n+(n+1) = \frac{n(n+1)}{2} + (n+1)$$
$$= \frac{(n+1)(n+2)}{2}$$

Thus
$$P(n+1)$$
 is true.

Then: by induction,
$$\forall n \in \mathbb{N}^*, 1+2+\ldots+n = \frac{n(n+1)}{2}$$
 is true.