المقادير السلمية و المقادير الشعاعية I.2.1. Scalar quantities and vector quantities

Physical quantities are divided into two groups:

- Scalar quantity such that; mass (m), time (t), energy (E),
- Vector quantity such as velocity (\vec{v}) , force (\vec{F}) ,...

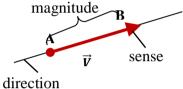
الأشعة I.2.2. Vectors

تعریف :I.2.2.1. Definition

A vector is a line segment AB, having an origin A and an end B. We denote it by \overrightarrow{AB} , or by a single letter: $\overrightarrow{AB} = \overrightarrow{V}$.characterized by:

- Its direction which is defined by that of the line which carries the segment
- Its sense which designates the orientation of the vector (from A towards B).
- Its magnitude (norm or intensity) which is equal to the length of the segment [AB], noted

 $\|\overrightarrow{AB}\|$ which is always positive.

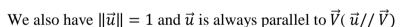


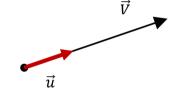
شعاع الوحدة I.2.2.2. Unit vector

A vector is unitary when its magnitude is equal to unity (1).

If \vec{u} is a unit vector carried by a vector \vec{V} then:

$$\vec{V} = \|\vec{V}\| \cdot \vec{u} \Rightarrow \vec{u} = \frac{\vec{V}}{\|\vec{V}\|}$$





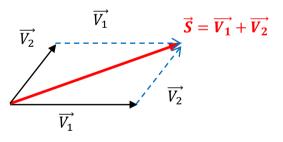
I.2.3. Vector Operations

Let $\overrightarrow{V_1}$, $\overrightarrow{V_2}$, $\overrightarrow{V_3}$, be three vectors, a, b and c real numbers

المعة الأشعة I.2.3.1. The sum (addition) of the vectors

The sum of two vectors $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$ is $\overrightarrow{S} = \overrightarrow{V_1} + \overrightarrow{V_2}$

Graphically, we can find the resulting vector \vec{S} by the parallelogram rule.



The sum of n vectors:
$$\overrightarrow{V_1}$$
, $\overrightarrow{V_2}$, $\overrightarrow{V_3}$,... $\overrightarrow{V_n}$ is $\overrightarrow{S} = \overrightarrow{V_1} + \overrightarrow{V_2} + \overrightarrow{V_3} + \cdots \overrightarrow{V_n}$

Properties: الخواص

- * Commutativity (تبدیلي:): $\vec{S} = \overrightarrow{V_1} + \overrightarrow{V_2} = \overrightarrow{V_2} + \overrightarrow{V_1}$
- * Associativity (نجميعي): $(\overrightarrow{V_1} + \overrightarrow{V_2}) + \overrightarrow{V_3} = \overrightarrow{V_1} + (\overrightarrow{V_2} + \overrightarrow{V_3})$.
- * Distributivity (نوزیعي) : (a+b). $\overrightarrow{V_1}=a$. $\overrightarrow{V_1}+b$. $\overrightarrow{V_1}$ and a. $(\overrightarrow{V_1}+\overrightarrow{V_2})=a$. $\overrightarrow{V_1}+a$. $\overrightarrow{V_2}$
- * The sum of a vector $\overrightarrow{V_1}$ and its opposite $(-\overrightarrow{V_1})$ is zero: $\overrightarrow{V_1} + (-\overrightarrow{V_1}) = \overrightarrow{0}$

طرح الأشعة I.2.3.2. Vector subtraction

The difference of two vectors $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$ is a vector \overrightarrow{D} , with:

$$\overrightarrow{D} = \overrightarrow{V_1} - \overrightarrow{V_2} = \overrightarrow{V_1} + (-\overrightarrow{V_2}) \neq \overrightarrow{V_2} - \overrightarrow{V_1}$$

The difference of the vectors is non-commutative.

Graphically, we can find the resulting vector \vec{D} by the parallelogram rule.

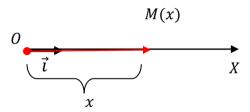


مركبات شعاع I.2.3.3. Components of a vector

To determine the components of a vector, it is necessary to choose a reference frame (coordinate system) which is a set of non-collinear unit vectors called basis. We can then decompose all the other vectors according to these unit vectors and this decomposition is unique. We have three types of references frame:

a) Linear reference frame: معلم خطی

It is composed of a single axis Ox, provided with a unit vector \vec{i} positively oriented. The coordinate (x) of point M is defined by: $\overrightarrow{OM} = x\vec{i}$ (x) is also called the component of the vector \overrightarrow{OM} .



b) Planar (two-dimensional) orthogonal reference frame: معلم مستوي

It is composed of two orthogonal axes of the plane, OX and OY, provided with unit vectors \vec{i} and \vec{j} positively oriented.

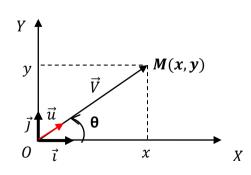
The position of a point M is characterized by the vector \overrightarrow{OM} : $\overrightarrow{V} = \overrightarrow{OM}$ Let x and y be the projections of M onto the OX and OY axes respectively, we have

$$\vec{V} = x\vec{\imath} + y\vec{\jmath} = \begin{pmatrix} x \\ y \end{pmatrix} \quad \text{So} \quad \begin{cases} x = \|\vec{V}\|\cos\theta \\ y = \|\vec{V}\|\sin\theta \end{cases}$$

$$\vec{V} = x\vec{\imath} + y\vec{\jmath} = \|\vec{V}\|\cos\theta\vec{\imath} + \|\vec{V}\|\sin\theta\vec{\jmath}\vec{u}$$

$$\Rightarrow \vec{V} = \|\vec{V}\|(\underbrace{\cos\theta.\vec{\imath} + \sin\theta.\vec{\jmath}}) \Rightarrow \vec{V} = \|V\|.\vec{u}$$

 \vec{u} is the unit vector of the vector \vec{V} : $\vec{u} = \cos\theta . \vec{i} + \sin\theta . \vec{j}$



(x,y) is called the components of the vector \vec{V} or the cartesian coordinates of the point M in the plane (OXY)

M'

c) An orthonormal reference in space: معلم متعامد متجانس في الفضاء

It is composed of three orthogonal axes, OX, OY and OZ, provided with unit vectors \vec{i} , \vec{j} and \vec{k} positively oriented. The position of a point M in space is characterized by the vector $\vec{V} = \overrightarrow{OM}$. Let x, y and z be the projections of M onto the axes OX, OY and OZ,

respectively. So we have:
$$\vec{V} = x\vec{i} + y\vec{j} + z\vec{k} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\begin{cases} x = \left\| \overrightarrow{OM'} \right\| \cos \theta \\ y = \left\| \overrightarrow{OM'} \right\| \sin \theta \Rightarrow \left\| \overrightarrow{OM'} \right\| = \| \overrightarrow{V} \|. \sin \varphi \\ z = \| \overrightarrow{V} \| \cos \varphi \end{cases}$$

$$\Rightarrow \begin{cases} x = \|\vec{V}\| sin\varphi. cos\theta \\ y = \|\vec{V}\| sin\varphi. sin\theta \\ z = \|\vec{V}\| cos\varphi \end{cases}$$

$$\vec{V} = ||\vec{V}||.\vec{u}$$

 \vec{u} is the unit vector of the vector \vec{V}

$$\vec{u} = \sin\varphi.\cos\theta.\vec{i} + \sin\varphi.\sin\theta.\vec{j} + \cos\varphi.\vec{k}$$

(x,y,z) is called the components of the vector \overrightarrow{OM} or the cartesian coordinates of the point M in the orthonormal reference frame (OXYZ).

X

The magnitude of a vector $\vec{V} = x\vec{\imath} + y\vec{\jmath} + z\vec{k}$ represents its length, it is given by the following formula: $\|\vec{V}\| = \sqrt{x^2 + y^2 + z^2} = V$. $\|\vec{V}\|$ is always positive

الجداء السلمي I.2.4. Scalar (dot) product

The dot product of two vectors $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$ is a scalar given by the following relation:

$$\overrightarrow{V_2}$$
 θ $\overrightarrow{V_1}$

$$\overrightarrow{V_1}.\overrightarrow{V_2} = \|\overrightarrow{V_1}\|.\|\overrightarrow{V_2}\|.\cos\theta$$

Where θ is the angle between the two vectors $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$

Properties

$$\vec{V} \cdot \vec{V} = ||\vec{V}|| \cdot ||\vec{V}|| \cdot \cos 0 = V^2$$

$$\overrightarrow{V_1} \cdot \overrightarrow{V_2} = \|\overrightarrow{V_1}\| \cdot \|\overrightarrow{V_2}\| \cdot \cos\theta = \|\overrightarrow{V_2}\| \cdot \|\overrightarrow{V_1}\| \cdot \cos(-\theta) \Rightarrow \overrightarrow{V_1} \cdot \overrightarrow{V_2} = \overrightarrow{V_2} \cdot \overrightarrow{V_1}$$

$$(\overrightarrow{V_1} \pm \overrightarrow{V_2})^2 = V_1^2 + V_2^2 \pm 2V_1V_2\cos\theta$$

• If
$$\theta = \frac{\pi}{2}$$
, their scalar product is zero: $\overrightarrow{V_1} \perp \overrightarrow{V_2} \Rightarrow \overrightarrow{V_1} \cdot \overrightarrow{V_2} = 0$

$$\vec{\mathbf{v}} \cdot \vec{\mathbf{i}} \cdot \vec{\mathbf{i}} = \vec{\mathbf{j}} \cdot \vec{\mathbf{j}} = \vec{\mathbf{k}} \cdot \vec{\mathbf{k}} = 1$$

- $\vec{\iota} \cdot \vec{j} = \vec{j} \cdot \vec{k} = \vec{\iota} \cdot \vec{k} = 0$
- ❖ If we know the coordinates of two vectors in an orthonormal basis, the scalar product will be expressed only in terms of the coordinates:

$$\overrightarrow{V_1} \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \text{ and } \overrightarrow{V_2} \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} \Rightarrow \overrightarrow{V_1}. \overrightarrow{V_2} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}. \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = x_1 x_2 + y_1 y_2 + z_1 z_2$$

I.2.5. Projection of the vector: مسقط شعاع

The projection of the vector $\overrightarrow{V_2}$ onto $\overrightarrow{V_1}$ is given by the following relation:

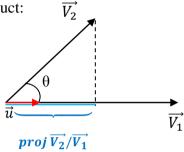
$$proj \overrightarrow{V_2}/\overrightarrow{V_1} = \|\overrightarrow{V_2}\|.cos\theta$$

We can rewrite the previous relation in the form of a scalar product:

$$\vec{u}.\overrightarrow{V_2} = \|\vec{u}\|.\|\overrightarrow{V_2}\|.cos\theta = \|\vec{u}\|.proj\ \overrightarrow{V_2}/\overrightarrow{V_1}$$

 \vec{u} is the unit vector of the vector $\vec{V_1}$ $\Rightarrow ||\vec{u}|| = \frac{\vec{V_1}}{||\vec{V_1}||} = 1$

$$\Rightarrow proj \overrightarrow{V_2}/\overrightarrow{V_1} = \frac{\overrightarrow{V_1}.\overrightarrow{V_2}}{V_1}$$



i.2.5.1. Vector projection of vector: شعاع مسقط شعاع

The vector projection of vector $\overrightarrow{V_2}$ onto $\overrightarrow{V_1}$ is a vector defined by:

$$\overrightarrow{proj}^{\overrightarrow{V_2}} / \overrightarrow{V_1} = proj \frac{\overrightarrow{V_2}}{\overrightarrow{V_1}} \cdot \overrightarrow{u} = \frac{\overrightarrow{V_1} \cdot \overrightarrow{V_2}}{V_1} \cdot \overrightarrow{u} = \frac{(\overrightarrow{V_1} \cdot \overrightarrow{V_2})}{V_1} \cdot \frac{\overrightarrow{V_1}}{V_1} = \frac{\overrightarrow{V_1} \cdot (\overrightarrow{V_1} \cdot \overrightarrow{V_2})}{{V_1}^2}$$

$$\overrightarrow{proj}^{\overrightarrow{V_2}} / \overrightarrow{V_1} = \frac{\overrightarrow{V_1} \cdot (\overrightarrow{V_1} \cdot \overrightarrow{V_2})}{{V_1}^2}$$

I.2.5.2. Direction cosines

The direction cosines of the vector $\vec{V} = x\vec{\imath} + y\vec{\jmath} + z\vec{k}$ are the cosines of angles that the vector \vec{V} forms with the coordinate axes.

Let α , β and γ be the angles that the vector \vec{V} makes with the axes OX, OY and OZ.

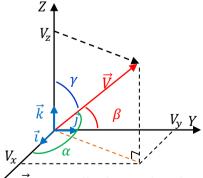
$$\cos \alpha = \frac{V_x}{V}$$

$$\cos \beta = \frac{V_y}{V}$$

$$\cos \gamma = \frac{V_z}{V}$$

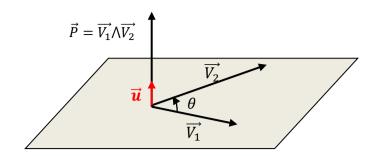
الجداء الشعاعي I.2.6. vector (cross) product

The cross product of two vectors $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$ is another vector \overrightarrow{P} perpendicular to the plane which formed by two vectors, it's direction is found by using the right-hand rule. The vector product is defined by:



$$\vec{P} = \overrightarrow{V_1} \wedge \overrightarrow{V_2} = ||\overrightarrow{V_1}||. ||\overrightarrow{V_2}||. \sin\theta. \vec{u}$$

Where \vec{u} is the unit vector perpendicular to plane formed by $\vec{V_1}$ and $\vec{V_2}$.



Properties

- The magnitude of \vec{P} is given by : $\|\vec{P}\| = \|\vec{V_1} \wedge \vec{V_2}\| = \|\vec{V_1}\| \cdot \|\vec{V_2}\| \cdot |sin\theta|$
- The cross product is anticommutative: $\overrightarrow{V_1} \wedge \overrightarrow{V_2} = -(\overrightarrow{V_2} \wedge \overrightarrow{V_1})$
- The cross product is distributive: $\overrightarrow{V_1} \wedge (\overrightarrow{V_2} \pm \overrightarrow{V_3}) = \overrightarrow{V_1} \wedge \overrightarrow{V_2} \pm \overrightarrow{V_1} \wedge \overrightarrow{V_3}$
- $\overrightarrow{V_1} \wedge \overrightarrow{V_2} = \overrightarrow{0} \Rightarrow \overrightarrow{V_1} // \overrightarrow{V_2}$
- $\vec{i} \wedge \vec{i} = \vec{j} \wedge \vec{j} = \vec{k} \wedge \vec{k} = \vec{0} \text{And} \vec{i} \wedge \vec{j} = \vec{k}, \ \vec{j} \wedge \vec{k} = \vec{i}, \ \vec{k} \wedge \vec{i} = \vec{j}$
- The cross product can be calculated by the determinant method

based on the coordinates of $\overrightarrow{V_1} \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$ and $\overrightarrow{V_2} \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$:

$$\overrightarrow{V_1} \wedge \overrightarrow{V_2} = \begin{vmatrix} \vec{\iota} & -\vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} . \vec{\iota} - \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} . \vec{J} + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} . \vec{k}$$

$$\overrightarrow{V_1} \wedge \overrightarrow{V_2} = (y_1 z_2 - z_1 y_2) \cdot \overrightarrow{i} - (x_1 z_2 - z_1 x_2) \cdot \overrightarrow{j} + (x_1 y_2 - y_1 x_2) \cdot \overrightarrow{k}$$

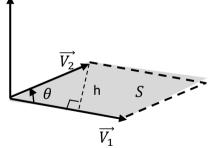
طويلة الجداء الشعاعي I.2.6.1. Magnitude of the cross product

The magnitude of the cross product of two vectors represents the area of a parallelogram formed by these two vectors: $\overrightarrow{U} \wedge \overrightarrow{U}$

$$\|\overrightarrow{V_1} \wedge \overrightarrow{V_2}\| = \|\overrightarrow{V_1}\| \cdot \|\overrightarrow{V_2}\| \cdot |\sin\theta|$$

$$h = V_2. |sin\theta| \Rightarrow S = h. V_1 = \|\overrightarrow{V_1} \wedge \overrightarrow{V_2}\|$$

The triple product of $\overrightarrow{V_1}$, $\overrightarrow{V_2}$ and $\overrightarrow{V_3}$ is defined by the vector D or:



$$\overrightarrow{D} = \overrightarrow{V_1} \wedge (\overrightarrow{V_2} \wedge \overrightarrow{V_3}) = (\overrightarrow{V_1}.\overrightarrow{V_3}).\overrightarrow{V_2} - (\overrightarrow{V_1}.\overrightarrow{V_2}).\overrightarrow{V_3}$$

الجداء المختلط I.2.6.2. Mixed product

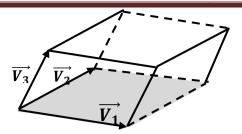
The mixed product of three vectors $\overrightarrow{V_1}$, $\overrightarrow{V_2}$ and $\overrightarrow{V_3}$ is the scalar quantity defined by

$$\overrightarrow{V_1}. \left(\overrightarrow{V_2} \wedge \overrightarrow{V_3} \right) = \begin{vmatrix} x_1 & -y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = \begin{vmatrix} y_2 & z_2 \\ y_3 & z_3 \end{vmatrix} . x_1 - \begin{vmatrix} x_2 & z_2 \\ x_3 & z_3 \end{vmatrix} . y_1 + \begin{vmatrix} x_2 & y_2 \\ x_3 & y_3 \end{vmatrix} . z_1$$

$$\overrightarrow{V_1}.\left(\overrightarrow{V_2} \wedge \overrightarrow{V_3}\right) = (y_2.z_3 - z_2.y_3).x_1 - (x_2.z_3 - z_2.x_3).y_1 + (x_2.y_3 - y_2.x_3).z_1$$

Note:

The value obtained from the mixed product of the three vectors is equal to the volume of the parallelepipedformed by these three vectors.



Properties:

$$\overrightarrow{V}_{1}. \left(\overrightarrow{V_{2}} \wedge \overrightarrow{V_{3}}\right) = \overrightarrow{V_{3}}. \left(\overrightarrow{V_{1}} \wedge \overrightarrow{V_{2}}\right) = \overrightarrow{V_{2}}. \left(\overrightarrow{V_{3}} \wedge \overrightarrow{V_{1}}\right)$$

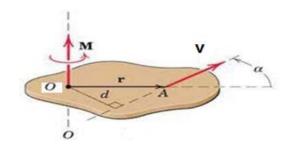
•
$$\overrightarrow{V_1}$$
. $(\overrightarrow{V_2} \land \overrightarrow{V_3}) = 0$ \Rightarrow Either the three vectors are in the same plane or $\overrightarrow{V_2} \parallel \overrightarrow{V_3}$.

عزم شعاع I.2.7. Moment of a vector

عزم شعاع بالنسبة إلى نقطة I.2.7.1. Moment of a vector relative to a point

The moment of a vector $\overrightarrow{V_1}$, which passes through point A, relative to a point O is defined by the vector $\overrightarrow{\mathcal{M}}$ such that:

$$\overrightarrow{\mathcal{M}}_{\overrightarrow{V_1}/O} = \overrightarrow{OA} \wedge \overrightarrow{V_1}$$



I.2.7.2. Moment of a vector relative to an axis عزم شعاع بالنسبة إلى محور

The moment of a vector $\overrightarrow{V_1}$, which passes through point A, relative to an $axis(\Delta)$ is given by the scalar product \mathcal{M} such that:

$$\mathcal{M}_{\overrightarrow{V_1}/(\Delta)} = \overrightarrow{\mathcal{M}}_{\overrightarrow{V_1}/0} = (\overrightarrow{OA} \wedge \overrightarrow{V_1}).\overrightarrow{u_{\Delta}}$$

 $\overrightarrow{u_{\Delta}}$: the unit vector of the axis (Δ).

I.2.8. Vector derivatives

Let a vector \vec{V} (vector function) depend on time (t): $\vec{V}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$

$$\frac{d\vec{V}}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$$

I.2.8.1. Properties

Consider two vector functions $\vec{A}(t)$ and $\vec{B}(t)$ and f(t) a scalar function:

•
$$\frac{d}{dt}(\vec{A} + \vec{B}) = \frac{d\vec{A}}{dt} + \frac{d\vec{B}}{dt}$$

•
$$\frac{d}{dt}(f.\vec{A}) = \frac{df}{dt} + f.\frac{d\vec{A}}{dt}$$

•
$$\frac{d}{dt}(\vec{A}.\vec{B}) = \frac{d\vec{A}}{dt}.\vec{B} + \vec{A}.\frac{d\vec{B}}{dt}$$

•
$$\frac{d}{dt}(\vec{A} \wedge \vec{B}) = \frac{d\vec{A}}{dt} \wedge \vec{B} + \vec{A} \wedge \frac{d\vec{B}}{dt}$$

التحليل الشعاعي I.2.8.2. Vector analysis

a) "Nabla" operator المؤثر نبلا

The nabla operator $\vec{\nabla}$ is a vector quantity written in cartesian coordinates:

$$\vec{\nabla} = \frac{\partial}{\partial x} \vec{i} + \frac{\partial}{\partial y} \vec{j} + \frac{\partial}{\partial z} \vec{k}$$

b) "Gradient" operator مؤثر التدرج

Let f(x, y, z) be a scalar function. Gradient of f is given by the following vector:

$$\overrightarrow{\text{grad}} f = \overrightarrow{\nabla} f = \left(\frac{\partial f}{\partial x}\right) \overrightarrow{i} + \left(\frac{\partial f}{\partial y}\right) \overrightarrow{j} + \left(\frac{\partial f}{\partial z}\right) \overrightarrow{k}$$

c) "Divergence" operator مثر التباعد

Let it be $\vec{V} = V_x \vec{i} + V_y \vec{j} + V_z \vec{k}$ a vector function. We define $div\vec{V}$ as follows:

$$div\overrightarrow{V} = \overrightarrow{\nabla}.\overrightarrow{V} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}$$

d) "Curl" operator مؤثر الدوران

Let it be $\vec{V} = V_x \vec{i} + V_y \vec{j} + V_z \vec{k}$ a vector function. We define $\overrightarrow{rot}(\vec{V})$ as follows:

$$\overrightarrow{\mathrm{rot}}(\overrightarrow{\mathrm{V}}) = \overrightarrow{\mathrm{V}} \wedge \overrightarrow{\mathrm{V}} = \left(\frac{\partial \mathrm{V}_{\mathrm{z}}}{\partial \mathrm{y}} - \frac{\partial \mathrm{V}_{\mathrm{y}}}{\partial \mathrm{z}}\right) \overrightarrow{\iota} - \left(\frac{\partial \mathrm{V}_{\mathrm{z}}}{\partial \mathrm{x}} - \frac{\partial \mathrm{V}_{\mathrm{x}}}{\partial \mathrm{z}}\right) \overrightarrow{\jmath} + \left(\frac{\partial \mathrm{V}_{\mathrm{y}}}{\partial \mathrm{x}} - \frac{\partial \mathrm{V}_{\mathrm{x}}}{\partial \mathrm{y}}\right) \overrightarrow{k}$$

- e) "Laplacian" operator مؤثر لابلاسيان
- Laplacian of a scalar function is defined by the following relation:

$$\vec{\nabla}^2.(f) = \vec{\nabla}.\vec{\nabla}(f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

- Laplacian of a vector function is given by the following relation:

$$\vec{\nabla}^2 \cdot (\vec{V}) = \vec{\nabla} \cdot \vec{\nabla} (\vec{V}) = \frac{\partial^2 V_x}{\partial x^2} \vec{\iota} + \frac{\partial^2 V_y}{\partial y^2} \vec{j} + \frac{\partial^2 V_z}{\partial z^2} \vec{k}$$

Exercises

Exercise 1

Let the vectors in space be $\overrightarrow{V_1} = 2\vec{\imath} - \vec{\jmath} + 3\vec{k}$ and $\overrightarrow{V_2} = -\vec{\imath} + \vec{\jmath} + 2\vec{k}$ represented in the frame $R(0, \vec{\imath}, \vec{\jmath}, \vec{k})$

-Calculate the angle between the two vectors $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$.

Exercise 2

Let the vectors in space be represented in an orthonormal coordinate system R (OXYZ),

$$\overrightarrow{V_1} = 2\overrightarrow{i} - 3\overrightarrow{j} + \overrightarrow{K}$$
 and $\overrightarrow{V_2} = -\overrightarrow{i} + 2\overrightarrow{j} + \overrightarrow{K}$

- 1. Represent these vectors in the reference R(OXYZ).
- 2. Calculate $\vec{R} = \vec{V_1} + \vec{V_2}$ and the modules: $||\vec{V_1}||$, $||\vec{V_2}||$.
- 3. Calculate the scalar product of $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$ and deduce the angle between them.
- 4. Determine the unit vector carried by the vector $\overrightarrow{V_2}$. Deduce the direction cosines of $\overrightarrow{V_2}$.

Exercise 3

Let the vectors in space be represented in an orthonormal coordinate system R (OXYZ),

$$\overrightarrow{V_2} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$$
 and $\overrightarrow{V_1} = 2\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}$

-Calculate the projection and the vector projection of the vector $\overrightarrow{V_2}$ onto the vector $\overrightarrow{V_1}$.

Exercise 4

Consider the points A(1,0,-1), B(-1,2,1), C(2,1,3) and D(0,1,0) in the frame (OXYZ).

- 1- Determine the components and magnitudes of the vectors \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} .
- 2- Determine the projection and the vector projection of \overrightarrow{AB} on \overrightarrow{AC} .
- 3- Calculate the surface (area) of triangle ABC and the volume constituted by \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} .

Exercise 5

In the frame $R(0, \vec{\imath}, \vec{j}, \vec{k})$ we give the sliding vector $\vec{V} = \vec{i} + 2\vec{j} + 3\vec{k}$ and which passes through the point A(3, 4, 2).

- 1. Calculate the moment of the vector \vec{V} relative to the origin O, then relative to the axes OX and OY.
- 2. Calculate the moment of vector \vec{V} relative to point B (3, 6, 0)
- 3. Consider the (Δ) axis of unit vector \vec{u} (-1/ $\sqrt{2}$, 1/2, 1/2) and passing through B, calculate the moment of \vec{V} relative to (Δ) .

Solution

Exercise 1

We have
$$\overrightarrow{V_1}.\overrightarrow{V_2} = \|\overrightarrow{V_1}\|.\|\overrightarrow{V_2}\|.\cos\theta \Rightarrow \cos\theta = \frac{\overrightarrow{V_1}.\overrightarrow{V_2}}{\|\overrightarrow{V_1}\|.\|\overrightarrow{V_2}\|}$$

$$\overrightarrow{V_1}.\overrightarrow{V_2} = \begin{pmatrix} 2\\-1\\3 \end{pmatrix} \begin{pmatrix} -1\\1\\2 \end{pmatrix} = 2.(-1) + (-1).1 + 3.(2) = -2 - 1 + 6 = 3$$

$$\|\overrightarrow{V_1}\| = \sqrt{x_1^2 + y_1^2 + z_1^2} = \sqrt{2^2 + (-1)^2 + 3^2} = \sqrt{4 + 1 + 9} = \sqrt{14}$$

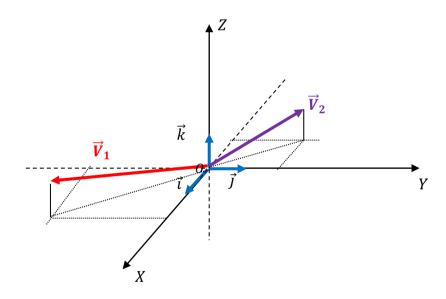
$$\|\overrightarrow{V_2}\| = \sqrt{x_2^2 + y_2^2 + z_2^2} = \sqrt{(-1)^2 + 1^2 + 2^2} = \sqrt{1 + 1 + 4} = \sqrt{6}$$

$$\cos\theta = \frac{\overrightarrow{V_1}.\overrightarrow{V_2}}{\|\overrightarrow{V_1}\|.\|\overrightarrow{V_2}\|} = \frac{3}{\sqrt{14}\sqrt{6}} = 0.32$$

$$\Rightarrow \theta = 71.33$$

Exercise 2

1. Represent $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$ in the reference R(OXYZ).



$$2. \vec{R} = \overrightarrow{V_1} + \overrightarrow{V_2} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \vec{\iota} - \vec{J} + 2\vec{K}$$

$$\vec{R} = \vec{\iota} - \vec{J} + 2\vec{K}$$

$$||\overrightarrow{V_1}|| = \sqrt{x_1^2 + y_1^2 + z_1^2} = \sqrt{2^2 + (-3)^2 + 1^2} = \sqrt{4 + 9 + 1} = \sqrt{14}$$

$$|||\overrightarrow{V_1}|| = \sqrt{14}$$

$$|||\overrightarrow{V_2}|| = \sqrt{x_2^2 + y_2^2 + z_2^2} = \sqrt{(-1)^2 + 2^2 + 1^2} = \sqrt{1 + 4 + 1} = \sqrt{6}$$

$$|||\overrightarrow{V_2}|| = \sqrt{6}$$

3. We have
$$|\overrightarrow{V_1}.\overrightarrow{V_2}| = \begin{pmatrix} 2\\-3\\1 \end{pmatrix} \begin{pmatrix} -1\\2\\1 \end{pmatrix} = 2(-1) + (-3)2 + 1(1) = -2 - 6 + 1 = -7$$

$$|\overrightarrow{V_1}.\overrightarrow{V_2}| = ||\overrightarrow{V_1}||. ||\overrightarrow{V_2}||. \cos\theta \Rightarrow \cos\theta = \frac{|\overrightarrow{V_1}.\overrightarrow{V_2}|}{||\overrightarrow{V_1}||. ||\overrightarrow{V_2}||}$$

$$\cos\theta = \frac{-7}{\sqrt{14}\sqrt{6}} = -0.76$$

$$|\theta = 139.79^{\circ}|$$

3. unit vector carried by the vector $\overrightarrow{V_2}$:

$$\overrightarrow{V_{2}} = \|\overrightarrow{V_{2}}\|.\overrightarrow{u_{2}} \Rightarrow \overrightarrow{u_{2}} = \frac{\overrightarrow{V_{2}}}{\|\overrightarrow{V_{2}}\|} = \frac{-1}{\sqrt{6}}\vec{i} + \frac{2}{\sqrt{6}}\vec{j} + \frac{1}{\sqrt{6}}\vec{k}$$

$$\overrightarrow{u_{2}} = \frac{-1}{\sqrt{6}}\vec{i} + \frac{2}{\sqrt{6}}\vec{j} + \frac{1}{\sqrt{6}}\vec{k}$$

- The direction cosines of $\overrightarrow{V_2}$ are the components of unit vector carried by the vector $\overrightarrow{V_2}$

$$\overrightarrow{u_2} = \frac{-1}{\sqrt{6}}\overrightarrow{i} + \frac{2}{\sqrt{6}}\overrightarrow{j} + \frac{1}{\sqrt{6}}\overrightarrow{K} = \cos\alpha \cdot \overrightarrow{i} + \cos\beta \cdot \overrightarrow{j} + \cos\gamma \cdot \overrightarrow{K} \Rightarrow \begin{cases} \cos\alpha = \frac{-1}{\sqrt{6}} \\ \cos\beta = \frac{2}{\sqrt{6}} \\ \cos\gamma = \frac{1}{\sqrt{6}} \end{cases}$$

Exercise 3

1) The projection of the vector $\overrightarrow{V_2}$ onto the vector $\overrightarrow{V_1}$:

$$proj_{\overrightarrow{V_2}/\overline{V_1}} = \frac{\overrightarrow{V_1}.\overrightarrow{V_2}}{V_1}$$

$$\overrightarrow{V_1}.\overrightarrow{V_2} = \begin{pmatrix} 1\\1\\1 \end{pmatrix} \begin{pmatrix} 2\\1\\-1 \end{pmatrix} = 1.2 + 1.1 + 1. (-1) = 2 + 1 - 1 = 2$$

$$V_1 = \sqrt{x_1^2 + y_1^2 + z_1^2} = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{6}$$

$$proj_{\overrightarrow{V_2}/\overline{V_1}} = \frac{\overrightarrow{V_1}.\overrightarrow{V_2}}{V_1} = \frac{2}{\sqrt{6}}$$

$$proj_{\overrightarrow{V_2}/\overline{V_1}} = \frac{2}{\sqrt{6}}$$

2) the vector projection of the vector $\overrightarrow{V_2}$ onto the vector $\overrightarrow{V_1}$:

$$\overrightarrow{proj}_{\overrightarrow{V_2}/\overrightarrow{V_1}} = \frac{\overrightarrow{V_1}.(\overrightarrow{V_1}.\overrightarrow{V_2})}{{V_1}^2}$$
$${V_1}^2 = 6$$

$$\Rightarrow \overline{proj}_{\overrightarrow{V_2}/\overrightarrow{V_1}} = \frac{2}{\sqrt{6}} \cdot \frac{\begin{pmatrix} 2\\1\\-1 \end{pmatrix}}{\sqrt{6}} = \frac{1}{3} \left(2\vec{i} + \vec{j} - \vec{k} \right)$$
$$\overline{proj}_{\overrightarrow{V_2}/\overrightarrow{V_1}} = \frac{1}{3} \left(2\vec{i} + \vec{j} - \vec{k} \right)$$

Exercise 4

1. The components and magnitudes of the vectors \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD}

$$\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix} \Rightarrow \overrightarrow{AB} \begin{pmatrix} -1 - 1 \\ 2 - 0 \\ 1 - (-1) \end{pmatrix} \Rightarrow \overrightarrow{AB} \begin{pmatrix} -2 \\ 2 \\ 2 \end{pmatrix} = -2\vec{1} + 2\vec{j} + 2\vec{k}$$

$$\overrightarrow{AB} = -2\vec{i} + 2\vec{j} + 2\vec{k}$$

$$\|\overrightarrow{AB}\| = \sqrt{(-2)^2 + 2^2 + 2^2} = \sqrt{4 + 4 + 4} = \sqrt{12} = 2\sqrt{3}$$

$$\|\overrightarrow{AB}\| = 2\sqrt{3}$$

$$\overrightarrow{AC} \begin{pmatrix} x_C - x_A \\ y_C - y_A \\ z_C - z_A \end{pmatrix} \Rightarrow \overrightarrow{AC} \begin{pmatrix} 2 - 1 \\ 1 - 0 \\ 3 - (-1) \end{pmatrix} \Rightarrow \overrightarrow{AC} \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} = \overrightarrow{1} + \overrightarrow{j} + 4\overrightarrow{k}$$

$$\overrightarrow{AC} = \vec{i} + \vec{j} + 4\vec{k}$$

$$\|\overrightarrow{AC}\| = \sqrt{1^2 + 1^2 + 4^2} = \sqrt{18} = 3\sqrt{2}$$

$$\|\overrightarrow{AC}\| = 3\sqrt{2}$$

$$\overrightarrow{AD} \begin{pmatrix} x_D - x_A \\ y_D - y_A \\ z_D - z_A \end{pmatrix} \Rightarrow \overrightarrow{AC} \begin{pmatrix} 0 - 1 \\ 1 - 0 \\ 0 - (-1) \end{pmatrix} \Rightarrow \overrightarrow{AD} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = -\vec{1} + \vec{j} + \vec{k}$$

$$\overrightarrow{AD} = -\vec{i} + \vec{j} + \vec{k}$$

$$\|\overrightarrow{AD}\| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$$

$$\|\overrightarrow{AD}\| = \sqrt{3}$$

- 2. The projection and the vector projection of \overrightarrow{AB} on \overrightarrow{AC} :
- a) The projection of \overrightarrow{AB} on \overrightarrow{AC}

$$proj_{\overrightarrow{AB}/\overrightarrow{AC}} = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left\|\overrightarrow{AC}\right\|}$$

$$\overrightarrow{AB}.\overrightarrow{AC} = \begin{pmatrix} -2\\2\\2\\2 \end{pmatrix} \begin{pmatrix} 1\\1\\4 \end{pmatrix} = -2 + 2 + 8 = 8$$

$$proj_{\overrightarrow{AB}/\overrightarrow{AC}} = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{\|\overrightarrow{AC}\|} = \frac{8}{3\sqrt{2}}$$

$$proj_{\overrightarrow{AB}/\overrightarrow{AC}} = \frac{8}{3\sqrt{2}}$$

b) The vector projection of \overrightarrow{AB} on \overrightarrow{AC} :

$$\overline{proj}_{\overrightarrow{AB}/\overrightarrow{AC}} = proj_{\overrightarrow{AB}/\overrightarrow{AC}} \cdot \overrightarrow{u}_{\overrightarrow{AC}} = \frac{\overrightarrow{AC} \cdot (\overrightarrow{AB} \cdot \overrightarrow{AC})}{\|\overrightarrow{AC}\|^2}$$

$$\Rightarrow \overline{proj}_{\overrightarrow{AB}/\overrightarrow{AC}} = 8 \cdot \frac{(\vec{i} + \vec{j} + 4\vec{k})}{18} = \frac{4}{9}(\vec{i} + \vec{j} + 4\vec{k})$$

$$\overline{proj}_{\overrightarrow{AB}/\overrightarrow{AC}} = \frac{4}{9}(\vec{i} + \vec{j} + 4\vec{k})$$

3. The surface (area) S_{ABC} of triangle ABC:

 $\overrightarrow{AB} \wedge \overrightarrow{AC}$

$$S = \|\overrightarrow{AB} \wedge \overrightarrow{AC}\|$$

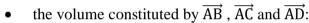
$$\overrightarrow{AB} \wedge \overrightarrow{AC} = \begin{vmatrix} \overrightarrow{\iota} & -\overrightarrow{J} & \overrightarrow{k} \\ -2 & 2 & 2 \\ 1 & 1 & 4 \end{vmatrix}$$

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = (8-2)\overrightarrow{i} - (-8-2)\overrightarrow{j} + (-2-2)\overrightarrow{k}$$

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = 6 \cdot \overrightarrow{i} + 10 \cdot \overrightarrow{j} - 4 \cdot \overrightarrow{k}$$

$$\|\overrightarrow{AB} \wedge \overrightarrow{AC}\| = \sqrt{6^2 + 10^2 + (-4)^2} = \sqrt{152}$$

$$S_{ABC} = \frac{S}{2} = \frac{\sqrt{152}}{2} \quad (su)$$



$$\overrightarrow{AD}(\overrightarrow{AB} \wedge \overrightarrow{AC}) = \begin{vmatrix} -1 & -1 & 1 \\ -2 & 2 & 2 \\ 1 & 1 & 4 \end{vmatrix} = 0$$

V=0, either the 3 vectors are in the same plane

Exercise 5

 $\vec{V} = \vec{i} + 2\vec{j} + 3\vec{k}$ which passes through the point A(3, 4, 2).

1. The moment of the vector \vec{V} relative to the origin O

$$\overrightarrow{\mathcal{M}}_{\overrightarrow{V}/O} = \overrightarrow{OA} \wedge \overrightarrow{V}$$

$$\overrightarrow{OA} \begin{pmatrix} x_A - x_O \\ y_A - y_O \\ z_A - z_O \end{pmatrix} \Rightarrow \overrightarrow{OA} \begin{pmatrix} 3 - 0 \\ 4 - 0 \\ 2 - 0 \end{pmatrix} \Rightarrow \overrightarrow{OA} \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}$$

$$\overrightarrow{\mathcal{M}}_{\overrightarrow{V}/O} = \overrightarrow{OA} \wedge \overrightarrow{V} = \begin{vmatrix} \overrightarrow{\iota} & -\overrightarrow{\jmath} & \overrightarrow{k} \\ 3 & 4 & 2 \\ 1 & 2 & 3 \end{vmatrix}$$

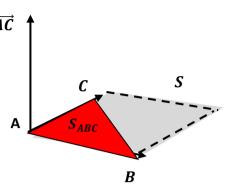
$$\overrightarrow{\mathcal{M}}_{\vec{V}/Q} = (4.3 - 2.2).\vec{i} - (3.3 - 2.1).\vec{j} + (3.2 - 4.1).\vec{k}$$

$$\overrightarrow{\mathcal{M}}_{\overrightarrow{V}/O} = 8.\overrightarrow{i} - 7\overrightarrow{j} + 2.\overrightarrow{k}$$

* Moment of \vec{V} relative to OX:

$$\overrightarrow{\mathcal{M}}_{\overrightarrow{V}/(OX)} = \overrightarrow{\mathcal{M}}_{\overrightarrow{V}/O}.\overrightarrow{\iota} = \begin{pmatrix} 8\\7\\2 \end{pmatrix}. \begin{pmatrix} 1\\0\\0 \end{pmatrix} = 8$$

* Moment of \vec{V} relative to OY:



$$\overrightarrow{\mathcal{M}}_{\overrightarrow{V}/(Oy)} = \overrightarrow{\mathcal{M}}_{\overrightarrow{V}/O}.\overrightarrow{J} = \begin{pmatrix} 8\\7\\2 \end{pmatrix}. \begin{pmatrix} 0\\1\\0 \end{pmatrix} = 0$$

2) Moment of vector \vec{V} relative to point B (3, 6, 0)

$$\overrightarrow{\mathcal{M}}_{\overrightarrow{V}/B} = \overrightarrow{BA} \wedge \overrightarrow{V}$$

$$\overrightarrow{BA} \begin{pmatrix} x_A - x_B \\ y_A - y_B \\ z_A - z_B \end{pmatrix} \Rightarrow \overrightarrow{BA} \begin{pmatrix} 3 - 3 \\ 4 - 6 \\ 2 - 0 \end{pmatrix} \Rightarrow \overrightarrow{BA} \begin{pmatrix} 0 \\ -2 \\ 2 \end{pmatrix}$$

$$\overrightarrow{\mathcal{M}}_{\vec{V}/B} = \overrightarrow{BA} \wedge \vec{V} = \begin{vmatrix} \vec{\iota} & -\vec{j} & \vec{k} \\ 0 & -2 & 2 \\ 1 & 2 & 3 \end{vmatrix} = (-10) \cdot \vec{\iota} + 2 \cdot \vec{j} + 2 \cdot \vec{k}$$

$$\overrightarrow{\mathcal{M}}_{\vec{V}/B} = -10 \cdot \vec{\iota} + 2 \cdot \vec{j} + 2 \cdot \vec{k}$$

$$\overrightarrow{\mathcal{M}}_{\vec{V}/B} = -10.\vec{i} + 2.\vec{j} + 2.\vec{k}$$

3) Moment of \vec{V} relative to (Δ) :

$$\overrightarrow{\mathcal{M}}_{\overrightarrow{V}/(\Delta)} = \overrightarrow{\mathcal{M}}_{\overrightarrow{V}/B}.\overrightarrow{u} = \begin{pmatrix} -10\\2\\2\\2 \end{pmatrix}. \begin{pmatrix} -1/\sqrt{2}\\1/2\\1/2 \end{pmatrix} = \frac{10}{\sqrt{2}} + 1 + 1$$
$$\overrightarrow{\mathcal{M}}_{\overrightarrow{V}/(\Delta)} = \frac{10}{\sqrt{2}} + 2$$