

Badji Mokhtar University Annaba Electronics Department

Telecommunication systems and networks, Lecture 2

Contact: seifallah.nasri@univ-annaba.org

Annaba, Algeria

Outline

- Communication system
- Terminology
- Analog to Digital
- Bandwidth and bitrate
- Impairments
- Capacity

Aim: transfer information from source to destination Source: Device that generates data to be transmitted Transmitter: Converts data from source into transmittable signals Transmission system: Carries data from source to destination Maybe simple as a single link/cable Or a complex network, e.g. the Internet Receiver: Converts received signal into data

Destination: Takes and uses incoming data

Example: Computer to Computer

- Transmitter (Tx) is built into source computer (Network Interface Card)
- Receiver (Rx) is built into destination computer
- Transmission system is single link between two computers

Communication system

Example: Old Dialup Connection

- Source and transmitter are separate devices (similar at destination)
- Transmission system is telephone network

Communication system

Example: Communications via the Internet

- Source and transmitter may support different technologies
- Transmission system is the Internet

Communication system

General Model for Communications via a Network

- Source system generates data
- Intermediate systems receive signal from previous system and then transmit to next system
- Destination system receives and processes the data
- Source and destination are connected via multiple transmission systems (or links) to form a network

Communication system

Challenges with Link Communications

- How to convert information into transmittable signals?
- What are the characteristics of signals?
- What transmission media to use?
- How to efficiently encode data as signals?
- How to know who is at other end?
- How to deal with errors?
- How to share media amongst two or more transmitters?

How big is a ...

- ► Web page?
- ► Email?
- Photo?
- Song?
- Audio CD?
- TV show?
- Movie?

Effective Data Communications

Delivery: the data must be delivered to the correct destination Accuracy: the data received must be accurate representation of the data sent Timeliness: the data should be delivered within a reasonable time Types of Internet Applications

Traditional Internet-Based Applications

- File transfer, email, web browsing, remote login, database
- Accuracy is most important

Multimedia or Real-time Applications

- Audio/video streaming, voice/video calls, gaming, collaborations
- Timeliness is most important

Terminology

Transmission Terminology

- > Data transmission occurs between a transmitter and a receiver via a medium.
- > Data is transmitted in form of electromagnetic waves or signals
- > Medium may be:

Guided: wires/cables, e.g. twisted pair, coaxial cable, optical fibre.

Unguided: wireless, e.g. air, water, vacuum.

Configuration may be:

Point-to-point: only 2 devices share the same medium. Multipoint: more than 2 devices share the medium

 Direction of communication may be: Simplex: one direction, e.g. television.
 Half duplex: both directions, but only one way at a time.
 Full duplex: both directions at the same time, e.g. telephone.

Electromagnetic waves

- Transmitter generates electromagnetic signals, which is transmitted over the medium
- Electromagnetic signals represent data
- Electromagnetic signal consists of one or more signal component.
- Electromagnetic signals can be represented in two domains:
 - Time domain: signal intensity vs time
 - Frequency domain: Peak signal intensity of component vs frequency

Digital signal maintains constant level for some period then changes to another constant level, in a

discrete manner.

Trade-offs

Bandwidth

- Digital signal has infinite bandwidth; transmission systems impose limits of transmitted signals.
- Bandwidth is a limited resource
- Greater the bandwidth, greater the cost.

Data Rate

- Digital data is approximated signal if limited bandwidth.
- Greater the bandwidth, greater the data rate

Accuracy

Receiver must be able to interpret received signal, even with transmission impairments.

Transmission impairments

- Received signal may be different from the transmitted signal causing:
 - > Analog: degradation of the signal quality
 - Digital: bit errors
- Most important impairements:
 - Attenuation and attenuation distortion
 - Delay distortion
 - Noise

Attenuation

- Signal strength decreases gradually with extended distances
- > Important conditions to Manufacturing a transmission system:
 - 1. Received signal has sufficient strength to be interpreted by the received
 - Power of the received signal is significantly higher than the power of the received noise.
- > Attenuation distortion is a problem of analog signals:
 - Attenuation along different frequencies
 - Received signal has different strengths
 - Apply equalisation to overcome

Noise

Thermal Noise

- Due to thermal agitation of electrons
- Present in all transmission devices and media
- Function of temparature:

N = kTB

Where k= Boltzmnan's constant ($1.38 \times 20^{-23} J/K$),B is bandwidth and T is temperature in kelvins.

Intermodulation noise

Caused when signals of diffrent frequencies share the same medium

Noise

Crosstalk

Unwanted coupling of different signals

Impulse noise

Short peak of noise, e.g. lightning, electrical disturbances, flaws in communications system.

Impairments

Effect of noise on a digital signal

Channel Capacity

- Channel capacity: maximum data rate at which data can be transmitted over a given communication channel.
- ➢ Relates:
 - Data rate, C [bits per second]
 - Bandwidth, B [Hertz]
 - Noise
 - Error rate
- Two theoretical models:

Nyquist Capacity: assumes noise-free (noiseless) enviroment Shannon Capacity: considers noise

Nyquist Capacity

- > Assumes that channel is noise free
- ➢ Given a bandwidth of B, the highest signal rate is 2B.
- Single signal element may carry more than 1 bit; signal with M levels may carry log₂ M bits

 $C = 2 B \log_2 M$

Tradeoffs

- Increasing the bandwidth, increases the data rate
- Increasing the signal levels, increases the data rate
- Increase the signal levels, harder for receiver to interpret the bits

Capacity

Example

$$M = 3 + 1 : 1 11
0 : - 10
-1 : 0 00
M = 4 : C = 2 \times 3100 \times \log_2(4)
= 12,400 b/s$$

Capacity

 $B = 3100 H_2$, C = 55,800 b/s $C = 2 \times B \times \log_2(m)$ 55,800 = 2 × 3,100 × log₂(m) $log_2(M) = \frac{55,800}{2 \times 3100}$ M = 512

Capacity Shannon Capacity

- With noise, some bits may be corrupted; higher data rate, more corrupted bits
- Increasing signal strength to overcome noise
- Signal-to-noise ration:

$$SNR = \frac{\text{signalpower}}{noisepower}$$

Shannon Capacity:

$$C = B \log_2(1 + SNR)$$

- > Tradeoffs:
 - Increasing the bandwidth or signal power, increases the data rate
 - Increase of noise, reduces the data rate
 - Increasing bandwidth, allows more noise
 - Increasing the signal power may cause intermodulation noise

CapacityExample
$$S(t)$$
VoltsWatts $P = V_x A$ Tx $Signal$: 10 WAttenuated $Signal$: 5 WNoise $signal$: 1 WSignal-to-noise $ratio$ SNR : $\frac{5W}{W}$

Shannon:

$$C = B \log_{2} (1 + SNR)$$

$$= 1 \times 10^{6} \times \log_{2} (1 + 251)$$

$$= 8 \text{ mb/s}$$
Nyquist:

$$C = 2B \log_{2} (m)$$

$$8 \times 10^{6} = 2 \times 1 \times 10^{6} \times \log_{2} (m)$$

$$4 = \log_{2} (m) => M = 16$$

Capacity

Thank you for your attention