UNIVERSITE BADJI MOKHTAR – ANNABA FACULTE DES SCIENCES DE L'INGENIORAT DEPARTEMENT D'INFORMATIQUE

SYLLABUS

Domaine : Mathématiques et Informatique **Filière :** Informatique

Spécialité: Master académique -Systèmes Embarqués et Mobilité (M2-SEM)

Semestre: 3 **Année**: 2025-2026

Identification de la matière d'enseignement

Intitulé: Introduction à la Robotique

Unité d'enseignement : UEM3

Nombre de Crédits : 3 Coefficient : 1

Volume horaire hebdomadaire total: 03h00

Cours (nombre d'heures par semaine): 01h30

• Travaux pratiques (nombre d'heures par semaine) :01h30

Travail Personnel (nombre d'heures par semaine) :02h30

• Langue d'enseignement : Français

Responsable de la matière d'enseignement

Nom & Prénom : ZEGHIB Yacine Grade : Maître de conférence – B -

Localisation du bureau : Bureau 6, bloc département d'informatique.

Email: yacine.zeghib@univ-annaba.dz

Horaires du cours et lieu du cours : Dimanche 08h00-09h30, Mardi 08h00-09h30 Salle J23

Description de la matière d'enseignement

Objectif général de la matière d'enseignement : Au terme de ce cours, les étudiants devront connaître les différents modèles et architectures des RI Articulés ainsi que leurs méthodes de programmation et de simulation.

Objectifs d'apprentissage :

- 1. Acquérir une base mathématique et mécanique dans le domaine de manipulation des objets dans l'espace (Représentation en coordonnées homogènes, Matrice de transformation, ..)
- 2. Connaître les différentes architectures des RI Articulés (série, parallèle, ou mixte).
- 3. Être capable d'étudier un RIA: calculer son DDL et le modéliser en utilisant la convention DH.

Contenu de la matière d'enseignement

• Chapitre 1 : Introduction

- Concepts terminologiques
- Les différents types de robots
- Domaines d'application

Chapitre 2 : Les Robots Industriels (RI)

- Éléments de mécanique
- Introduction aux RI
- o Architecture d'un Robot Industriel Articulé (RIA)
- Les robots séries simples
- Applications et critères de choix

Chapitre 3 : Modélisation des RI

- Mathématiques pour la robotique
- o Modélisation des RI
- Convention de Denavit-Hartenberg / de Denavit-Hartenberg modifiée

• Chapitre 4 : Programmation des RI

- Génération de trajectoires
- Types de commande
- o Programmation En-Ligne "par apprentissage"
- Programmation Hors-Ligne (PHL)

Modalités d'évaluation

Nature du contrôle	Pondération en %		
Examen	50		
TP	50		
Total	100		
Note finale = $(EMD + moyenne des TPs) / 2$			

Références & Bibliographie

- Robot : Les machines de demain ; <u>Andrea Mills</u>, <u>Clive Gifford</u>, <u>LauraBuller</u>; Gallimard-Jeunesse; 2019
- Modélisation des Robots ; S.BORSALI ; 2012
- Théorie Générale des Systèmes Articulés ; André PREUMONT ; 2001
- Modélisation et commande des robots manipulateurs, Alain LIÉGEOIS; Techniques de l'Ingénieur.
- ROBOTIQUE ; Bernard BAYLE ; Université Louis Pasteur de Strasbourg ; 2008
- Programmation des robots ; Étienne DOMBRE ; Techniques de l'Ingénieur.
- Springer Handbook of Robotics; Bruno Siciliano, Oussama Khatib (Eds.); 2008

ANNEXE

N°	Nom	Prénom(s)	Email, (Téléphone)	Emargement
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				