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CHAPITRE 1

SETS, FUNCTIONS, AND BINARY RELATIONS

1.1 Sets

De�nition 1.1. A set is a collection of objects called the elements of that set.

Notations :

� n general, sets are represented by capital letters : E,F, ...
� Elements of a set are usually represented by lowercase letters : x, y, ...
� If x is in E, we write x ∈ E.
� If x is not in E, we write x /∈ E.

Example 1.1. 1. The set of digits in the decimal system :

E = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
we have : 5 ∈ E, 15 /∈ E.

2. The set of even natural numbers :

P = {x ∈ N such that 2 divides x},
we have : 2 ∈ P, 3 /∈ P.

3. The empty set is denoted by ∅, which contains no elements.

4. The set
F = {x ∈ R such that |x− 1| ≤ 2} = [−1, 3].

1.1.1 Sets Inclusion

De�nition 1.2. Let A and B be two sets. We say that A is included in B if and only if every
element of A is in B, and we write A ⊂ B.

Remark 1.1. 1. If A is included in B, we can say that A is a part of B (or A is a subset
of B), and we write :

A ⊂ B ⇔ ∀x : x ∈ A⇒ x ∈ B.

2. We say that A is not included in B if there exists at least one element of A that does
not belong to B, and we write :

A 6⊂ B ⇔ ∃x : x ∈ A ∧ x /∈ B.

Example 1.2. 1. We have : N ⊂ Z ⊂ Q ⊂ R.
2. If A = ]1, 2[ and B = [1, 2], then A ⊂ B
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1.1.2 Equality of Two Sets

De�nition 1.3. Let A and B be two sets. We say that A and B are equal if they have the same
elements, and we write A = B.

A = B ⇔ ((A ⊂ B) ∧ (B ⊂ A)).

Example 1.3. Let

A = {x ∈ R : |x− 1| ≤ 1}, B = [0, 2], C = [0, 2[.

We have :
A = B, A 6= C, B 6= C, C ⊂ B.

1.1.3 Subsets of a Set

De�nition 1.4. Let E be a set. The set of all subsets of E is called the parts of a Set E,
denoted P (E).

Example 1.4. Let E = {−1, 0, 1}, then :

P (E) = {∅, E, {−1} , {0} , {1} , {−1, 0} , {−1, 1} , {0, 1}}

1.1.4 Set Operations

Set Complement

De�nition 1.5. Let A be a subset of E. The complement of A in E is :

CEA = {x ∈ E : x /∈ A}.

Example 1.5. 1. Let E = {0, 1, 2, 3, 4, 5} and A = {1, 3, 5}, then : CEA = {0, 2, 4} .
2. Let I = [−1, 8[, then : CRI = ]−∞,−1[ ∪ [8,+∞[.

Remark 1.2. CE(CEA) = A.

Intersection

De�nition 1.6. Let A and B be subsets of E. The intersection of A and B is :

A ∩B = {x ∈ E : x ∈ A and x ∈ B}.

Example 1.6. 1. Let : A = {2, 4, 6} and B = {3, 4, 5, 6}, then : A ∩B = {4, 6}.
2. Let : A = [−5, 5] and A = ]2,+∞[, then : A ∩B = ]2, 5].

Union

De�nition 1.7. Let A and B be subsets of E. The union of A and B is :

A ∪B = {x ∈ E : x ∈ A or x ∈ B}.

Example 1.7. 1. Let : A = {0, 2, 4} and B = {3, 4, 5, 6}, then : A ∪B = {0, 2, 3, 4, 5, 6}.
2. Let : A = [−5, 5] and A = ]2,+∞[, then : A ∪B = [−5,+∞[.

Remark 1.3. 1. If A and B have no elements in common, they are said to be disjoint ; in
this case, A ∩B = ∅.

2. A ∩ CEA = ∅ and A ∪ CEA = E.
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Di�erence of Two Sets

De�nition 1.8. Let A and B be subsets of E. The di�erence of A and B is :

A \B = {x ∈ E : x ∈ A and x /∈ B}.

Example 1.8. Let : E = R, A = [−1, 2] and B = [0, 3], then we have :

A \B = [−1, 0[ et B \ A = ]2, 3]

Symmetric Di�erence

De�nition 1.9. Let A and B be subsets of E. The symmetric di�erence of A and B is :

A M B = (A \B) ∪ (B \ A) = (A ∪B) \ (A ∩B).

Example 1.9. Let : E = Z, A = {−3, 0, 2, 6} et B = {−1, 1, 2, 6}, then we have :

A M B = {−3,−1, 0, 1}

Properties of Set Operations

Let A, B, and C be subsets of a set E. We have :

1. Commutativity :
A ∩B = B ∩ A, A ∪B = B ∪ A.

2. Associativity :

A ∩ (B ∩ C) = (A ∩B) ∩ C, A ∪ (B ∪ C) = (A ∪B) ∪ C.

3. Distributivity :

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C), A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

4. De Morgan's Laws :

(A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc.

Démonstration. 6. Show that : (A∪B)c = Ac∩Bc It must be shown that : (A∪B)c ⊂ Ac∩Bc

and Ac ∩Bc ⊂ (A ∪B)c.
� (A ∪B)c ⊂ Ac ∩Bc :

Let x ∈ (A ∪ B)c ⇒ x /∈ (A ∪ B) ⇒ x /∈ A ∧ x /∈ B ⇒ x ∈ Ac ∧ x ∈ Bc as well as

x ∈ (A ∪B)c ⇒ x ∈ (Ac ∩Bc), from where (A ∪B)c ⊂ (Ac ∩Bc).
� Ac ∩Bc ⊂ (A ∪B)c

Let x ∈ (Ac ∩Bc) ⇒ x ∈ Ac ∧ x ∈ Bc ⇒ x /∈ A ∧ x /∈ B ⇒ x /∈ (A ∪ B), d′ where
Ac ∩Bc ⊂ (A ∪B)c, then (A ∪B)c = Ac ∩Bc.

1.1.5 Cartesian Product

De�nition 1.10. For two sets A and B, the Cartesian product is the set of all pairs (a, b) with
a ∈ A and b ∈ B :

A×B = {(a, b) | a ∈ A, b ∈ B}.

Example 1.10. Let : A = {1, 2}, B = {1, 2, 3}

A×B = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)},
B × A = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)},

A×B 6= B × A, car (3, 2) ∈ B × A, and (3, 2) /∈ A×B.
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1.2 Functions

De�nition 1.11. A function from a set E to a set F is a correspondence f that associates
to each element x ∈ E one and only one element y ∈ F .
The set E is called the domain, and F is called the codomain. The element y of F associated
with an element x of E is denoted by y = f(x).
y = f(x) is called the image of x, and x is called a preimage (or antecedent) of y. We write :

f : E −→ F

x 7−→ y = f(x)

Example 1.11. 1. Consider the following functions :
�

f : N −→ N
n 7−→ 2n + 1

�
g : R −→ R+

x 7−→ x2.

�
IdE : E −→ E

x 7−→ x.

IdE is called the identity function on E.

2. The correspondence :
f : R −→ R

x 7−→ 1

x
.

is not a function, since the element 0 has no image in R.

1.2.1 Direct Image and Inverse Image

a) Direct Image

De�nition 1.12. Let f : E → F and A ⊂ E. The direct image of A by f , written f(A), is the
set of all images of the elements of A by f :

f(A) = {f(x) ∈ F | x ∈ A}.

Example 1.12. Let f be the function de�ned by :

f : [0, 3] −→ [0, 5]

x 7−→ f(x) = 2x + 1

� Let's calculate f({2}) :

f({2}) = {f(x) | x ∈ {2}} = {2x + 1 | x = 2} = {f(2)} = {5}.

� Let's calculate f([0, 1]) :

f([0, 1]) = {f(x) | x ∈ [0, 1]} = {2x + 1 | 0 ≤ x ≤ 1}.
Since 0 ≤ x ≤ 1⇒ 0 ≤ 2x ≤ 2⇒ 1 ≤ 2x + 1 ≤ 3,

then f([0, 1]) = [1, 3] ⊂ [0, 5].
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b) Inverse Image

De�nition 1.13. Let f : E → F and B ⊂ F . The inverse image of B by f , written f−1(B),
is the set of all x in E such that f(x) is in B :

f−1(B) = {x ∈ E | f(x) ∈ B}.

Example 1.13. Let f be the function de�ned by :

f : [0, 2] −→ [0, 4]

x 7−→ f(x) = (x− 1)2

1. Let's �nd f−1({0}) :

f−1({0}) = {x ∈ [0, 2] | f(x) ∈ {0}} = {x ∈ [0, 2] | f(x) = 0} = {x ∈ [0, 2] | (x−1)2 = 0} = {1}.

2. Let's �nd f−1((0, 1)) :

f−1((0, 1)) = {x ∈ [0, 2] | f(x) ∈ (0, 1)}
= {x ∈ [0, 2] | 0 < (x− 1)2 < 1}.

We have (x− 1)2 > 0 for all x ∈ [0, 1) ∪ (1, 2].
Also, (x− 1)2 < 1⇒ |x− 1| < 1⇒ −1 < x− 1 < 1⇒ 0 < x < 2.
Combining both, we get :

f−1((0, 1)) = ([0, 1) ∪ (1, 2]) ∩ (0, 2) = (0, 1) ∪ (1, 2).

Proposition 1.1. Let f : E → F . Then :

1. If A ⊂ B, then f(A) ⊂ f(B).

2. f(A ∪B) = f(A) ∪ f(B).

3. f(A ∩B) ⊂ f(A) ∩ f(B).

Démonstration. 1. Let y ∈ f(A). Then there exists x ∈ A such that f(x) = y. Since A ⊂ B,

we have x ∈ B, hence y = f(x) ∈ f(B). Therefore, f(A) ⊂ f(B).

2. Let's show that f(A ∪B) ⊂ f(A) ∪ f(B).

y ∈ f(A ∪B)⇔ ∃x ∈ A ∪B such that f(x) = y

⇔ (∃x ∈ A, f(x) = y) ∨ (∃x ∈ B, f(x) = y)

⇔ y ∈ f(A) ∨ y ∈ f(B)

⇔ y ∈ f(A) ∪ f(B).

The reverse inclusion f(A) ∪ f(B) ⊂ f(A ∪ B) is proved in the same way. Hence,

f(A ∪B) = f(A) ∪ f(B).

3. Let
y ∈ f(A ∩B)⇒ ∃x ∈ A ∩B such that f(x) = y

⇒ (∃x ∈ A, f(x) = y) ∧ (∃x ∈ B, f(x) = y)

⇒ y ∈ f(A) ∧ y ∈ f(B)

⇒ y ∈ f(A) ∩ f(B).

Therefore, f(A ∩B) ⊂ f(A) ∩ f(B).

Example 1.14. Let f(x) = x2, A = [−1, 0], B = [0, 1]. Then A ∩ B = {0}, f(A) = [0, 1], and
f(B) = [0, 1].

f(A) ∩ f(B) = [0, 1], f(A ∩B) = f({0}) = {0} 6= [0, 1] = f(A) ∩ f(B).

The equality f(A ∩B) = f(A) ∩ f(B) holds only when f is injective.
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1.2.2 Injection, Surjection, Bijection

Let E and F be two non-empty sets, and let f be a function from E to F .

a) Injection

De�nition 1.14. A function f is injective (or one-to-one) if each element of F has at most
one preimage in E. That is,

f is injective ⇔ ∀x1, x2 ∈ E, f(x1) = f(x2)⇒ x1 = x2,

or equivalently,
x1 6= x2 ⇒ f(x1) 6= f(x2).

Example 1.15. Are the following functions injective ?

1.

f1 : N→ N
n 7−→ 3n + 5.

f1 is injective because : ∀n1, n2 ∈ N, f1(n1) = f1(n2)⇒ 3n1 + 5 = 3n2 + 5⇒ 3n1 = 3n2 ⇒ n1 = n2.

2.
f2 : R→ R+

x 7−→ x2.

f2 is not injective because −1 and 1 have the same image.

b) Surjection

De�nition 1.15. A function f is surjective (onto) if every y in F is the image of at least
one x in E :

∀y ∈ F, ∃x ∈ E such that y = f(x).

Example 1.16. Are the following functions surjective ?

1.
f1 : N→ N
n 7−→ 3n + 5

f1 is not surjective. Suppose it is surjective, that is :

∀y ∈ N, ∃n ∈ N : y = 3n + 5⇒ n =
y − 5

3
.

But n = y−5
3

is not always a natural number, which is a contradiction. Therefore, f1 is
not surjective.

2.
f2 : R→ R+

x 7−→ x2

f2 is surjective because every element of R+ has at least one preimage in R.
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c) Bijection

De�nition 1.16. A function f is bijective (or a bijection) if it is both injective and surjective.
That is, every element of F is the image of one and only one element of E :

f is bijective ⇔ ∀y ∈ F, ∃!x ∈ E : y = f(x).

Example 1.17. 1. f1 is not bijective because it is not surjective.

2. f2 is not bijective because it is not injective.

3. Let
f3 : R −→ R

x 7−→ 2x + 1

f3 is bijective because :
� it is injective : if f3(x1) = f3(x2), then 2x1 + 1 = 2x2 + 1, so x1 = x2 ;
� it is surjective : for every y ∈ R, we have y = 2x + 1, which gives x = y−1

2
∈ R.

Remark 1.4. If f is bijective, then there exists an inverse function f−1 from F to E, and

(f−1)−1 = f.

Example 1.18. The function f3 is bijective, and its inverse is de�ned by :

f−13 : R −→ R

y 7−→ y − 1

2
.

1.2.3 Composition of Functions

De�nition 1.17. Let E, F , and G be sets. If f : E → F and g : F → G, then the composition
of f and g, written g ◦ f , is the function from E to G de�ned by

(g ◦ f)(x) = g(f(x)).

Example 1.19. We consider the following functions :

f : R −→ R
x 7−→ x2.

g : R −→ R
x 7−→ x + 1.

Alors :
g ◦ f : R −→ R

x 7−→ x2 + 1.

et
f ◦ g : R −→ R

x 7−→ (x + 1)
2

.

It is clear that : g ◦ f 6= f ◦ g.

Proposition 1.2. 1. If f and g are injective, then g ◦ f is injective.

2. If f and g are surjective, then g ◦ f is surjective.
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Démonstration. 1. Suppose that f and g are injective. Let us show that g ◦ f is injective.

Let x1, x2 ∈ E such that

g ◦ f(x1) = g ◦ f(x2).

Then

g(f(x1)) = g(f(x2)).

Since g is injective, we have

f(x1) = f(x2).

As f is injective, it follows that

x1 = x2.

Hence, g ◦ f is injective.

2. Suppose that f and g are surjective, that is, f(E) = F and g(F ) = G.
Let us show that g ◦ f is surjective. We have

g ◦ f(E) = g(f(E)) = g(F ) = G,

by the surjectivity of f and g. Therefore, g ◦ f is surjective.

Remark 1.5. It follows that the composition of two bijections is a bijection.
In particular, for f : E → F and its inverse f−1 : F → E, we have

f−1 ◦ f = IdE and f ◦ f−1 = IdF .

Proposition 1.3. Let f : E −→ F and g : F −→ G. Then :

1. If g ◦ f is injective, then f is injective.

2. If g ◦ f is surjective, then g is surjective.

3. If g ◦ f is bijective, then f is injective and g is surjective.

Démonstration. 1. Let x1, x2 ∈ E such that f(x1) = f(x2). Then

g(f(x1)) = g(f(x2)).

Since g ◦ f is injective, we have x1 = x2. Hence, f is injective.

2. We have f(E) ⊂ F ⇒ g◦f(E) ⊂ g(F ) ⊂ G. Since g◦f is surjective, we get g◦f(E) = G,
which implies G ⊂ g(F ). Therefore, G = g(F ), and thus g is surjective.

1.3 Binary Relations

De�nition 1.18. A relation from a set E to a set F is a correspondence R that links elements
of E with elements of F .
If x is related to y by R, we write xRy.
If E = F , the relation R is called a binary relation.

Example 1.20. 1. For all x, y ∈ N, let xRy ⇔ x divides y. Then R is a binary relation.

2. For all x, y ∈ R, let xSy ⇔ x2 + 1 = y2 + 1. Then S is a binary relation.

3. Let P(E) be the set of all subsets of a set E.
For all A,B ⊂ P(E), let AT B ⇔ A ⊂ B. Then T is a binary relation.
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1.3.1 Properties of Binary Relations

Let R be a binary relation on a set E, and let x, y, z ∈ E. We say that R is :

1. Re�exive : ∀x ∈ E, xRx.
2. Symmetric : ∀x, y ∈ E, xRy ⇒ yRx.
3. Antisymmetric : ∀x, y ∈ E, (xRy) ∧ (yRx)⇒ (x = y).

4. Transitive : ∀x, y, z ∈ E, (xRy) ∧ (yRz)⇒ (xRz).

1.3.2 Equivalence Relation

De�nition 1.19. A binary relation R on a set E is an equivalence relation if it is re�exive,
symmetric, and transitive.

Example 1.21. Let R be a binary relation on R de�ned by :

∀x, y ∈ R, xRy ⇔ x + 1 = y + 1.

Let us show that R is an equivalence relation :

a) R is re�exive : ∀x ∈ R, xRx.
Indeed, xRx⇔ x + 1 = x + 1⇒ 0 = 0, which is true.
Therefore, R is re�exive.

b) R is symmetric : ∀x, y ∈ R, xRy ⇒ yRx.
We have xRy ⇔ x + 1 = y + 1⇔ y + 1 = x + 1⇒ yRx.
Therefore, R is symmetric.

c) R is transitive : ∀x, y, z ∈ R, {
xRy,
yRz

⇒ xRz.

We have {
xRy ⇔ x + 1 = y + 1,

yRz ⇔ y + 1 = z + 1,
⇒ x + 1 = z + 1⇔ xRz.

Therefore, R is transitive.

Hence, from (a), (b), and (c), R is an equivalence relation.

Equivalence Class

De�nition 1.20. Let R be an equivalence relation on a set E. The equivalence class of
x ∈ E is the set

x̄ = { y ∈ E | xRy }.

Remark 1.6. The set of all equivalence classes of elements of E is called the quotient set of
E by R, and is denoted by E/R :

E/R = { ẋ | x ∈ E }.

Example 1.22. Let R be the binary relation on R de�ned by :

∀x, y ∈ R, xRy ⇔ x2 − x = y2 − y.

R is an equivalence relation because :
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1. ∀x ∈ R, x2 − x = x2 − x⇔ xRx. Hence, R is re�exive.

2. ∀x, y ∈ R, xRy ⇔ x2 − x = y2 − y ⇔ y2 − y = x2 − x⇔ yRx. Hence, R is symmetric.

3. ∀x, y, z ∈ R, (xRy∧yRz)⇔ (x2−x = y2−y∧y2−y = z2−z)⇒ x2−x = z2−z ⇔ xRz.
Hence, R is transitive.

Now, let us �nd the following equivalence classes : C0, 1, 2̇, and C 1
2
.

1. C0 = {y ∈ E | 0Ry}, and 0Ry ⇔ y2 − y = 0, hence C0 = {0, 1}.
2. 1 = {y ∈ E | 1Ry}, and y2 − y = 1− 1 = 0, hence 1 = {0, 1}.
3. 2̇ = {y ∈ E | 2Ry}, and y2 − y = 2, hence 2̇ = {−1, 2}.
4. C 1

2
= {y ∈ E | 1

2
Ry}, and y2 − y = 1

4
− 1

2
= −1

4
, hence C 1

2
=
{

1
2

}
.

1.3.3 Order Relation

De�nition 1.21. Let E be a non-empty set. A binary relation R on E is called an order
relation if it is re�exive, antisymmetric, and transitive.

Example 1.23. Let R be the binary relation on E de�ned by :

∀A ⊂ E,∀B ⊂ E, ARB ⇔ A ⊂ B.

Let us show that R is an order relation :

a) Re�exive : ∀A ⊂ E, A ⊂ A. Hence, R is re�exive.

b) Antisymmetric : ∀A,B ⊂ E, (A ⊂ B ∧B ⊂ A)⇒ A = B. Hence, R is antisymmetric.

c) Transitive : ∀A,B,C ⊂ E, (A ⊂ B ∧B ⊂ C)⇒ A ⊂ C. Hence, R is transitive.

Therefore, from (a), (b), and (c), R is an order relation.

De�nition 1.22. An order relation on a set E is called a total order if any two elements of
E are comparable, i.e., ∀x, y ∈ E, we have xRy or yRx. An order relation that is not total is
called a partial order.

Example 1.24. 1. For all x, y ∈ R, let xRy ⇔ x ≤ y. This is a total order relation
because :

2. Re�exive : ∀x ∈ R, x ≤ x⇔ xRx.
3. Antisymmetric : ∀x, y ∈ R, (xRy ∧ yRx)⇔ (x ≤ y ∧ y ≤ x)⇒ x = y.

4. Transitive : ∀x, y, z ∈ R, (xRy ∧ yRz)⇔ (x ≤ y ∧ y ≤ z)⇒ x ≤ z ⇔ xRz.
5. Total : ∀x, y ∈ R, x ≤ y or y ≤ x, so R is a total order relation.
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