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CHAPITRE 1

SETS, FUNCTIONS, AND BINARY RELATIONS

1.1 Sets

Definition 1.1. A set is a collection of objects called the elements of that set.

Notations :

— n general, sets are represented by capital letters : E, F\ ...

— Elements of a set are usually represented by lowercase letters : x,, ...
— Ifzisin E, we write x € E.

— If z is not in F, we write x ¢ F.

Example 1.1. 1. The set of digits in the decimal system :
E =1{0,1,2,3,4,5,6,7,8,9},
we have : 5 € E, 15¢ FE.
2. The set of even natural numbers :
P = {z € N such that 2 divides x},
we have : 2 € P, 3¢ P.

3. The empty set is denoted by 0, which contains no elements.

4. The set
F = {z € R such that |z — 1] <2} =[-1,3].

1.1.1 Sets Inclusion
Definition 1.2. Let A and B be two sets. We say that A is included in B if and only if every
element of A is in B, and we write A C B.

Remark 1.1. 1. If A is included in B, we can say that A is a part of B (or A is a subset
of B), and we write :
ACB&VYVr:x e A= x € B.

2. We say that A is not included in B if there exists at least one element of A that does
not belong to B, and we write :

A¢dB&sdr:xe ANz ¢ B.

Example 1.2. 1. We have :NCZ C Q C R.
2. If A=11,2[ and B =11,2], then AC B
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1.1.2 Equality of Two Sets

Definition 1.3. Let A and B be two sets. We say that A and B are equal if they have the same
elements, and we write A = B.

A=B & ((ACB)AN(BCA).
Example 1.3. Let
A={zreR:|jz—1/<1}, B=[0,2, C=][0,2]
We have :
A=B, A+£C, B£C, CC B.
1.1.3 Subsets of a Set

Definition 1.4. Let E be a set. The set of all subsets of E 1is called the parts of a Set FE,
denoted P(E).

Example 1.4. Let E = {—1,0,1}, then :
P(E> = {®7 E> {_1} ) {0} ) {1} ) {_1’ 0} ) {_17 1} ) {O’ 1}}

1.1.4 Set Operations
Set Complement
Definition 1.5. Let A be a subset of E. The complement of A in E is :
CpA={r e E:x¢ A}
Example 1.5. 1. Let E=1{0,1,2,3,4,5} and A ={1,3,5}, then : CpA ={0,2,4} .
2. Let I =[—1,8[, then : Crl =]|—00,—1[U[8,400].
Remark 1.2. Cg(CgA) = A.

Intersection
Definition 1.6. Let A and B be subsets of E. The intersection of A and B is :
ANB={zx€ E:x € A and z € B}.

Example 1.6. 1. Let : A={2,4,6} and B = {3,4,5,6}, then : AN B = {4,6}.
2. Let : A=[-5,5] and A =]2,400|, then : AN B =]2,5].

Union

Definition 1.7. Let A and B be subsets of EE. The union of A and B 1is :
AUB={x€ E:xz € A orx € B}.

Example 1.7. 1. Let : A=1{0,2,4} and B = {3,4,5,6}, then : AU B = {0,2,3,4,5,6}.
2. Let : A=[-5,5] and A =]2,400], then : AU B = [-5,400].
Remark 1.3. 1. If A and B have no elements in common, they are said to be disjoint ; in
this case, AN B = (.
2. ANCgA=0 and AUCEA=FE.



Difference of Two Sets
Definition 1.8. Let A and B be subsets of EE. The difference of A and B is :
A\B={rx e E:x€ Aandx ¢ B}.
Example 1.8. Let : E =R, A=[-1,2] and B =10,3|, then we have :
A\ B=[-1,0] et B\ A=]2,3]

Symmetric Difference
Definition 1.9. Let A and B be subsets of EE. The symmetric difference of A and B is :
AANB=(A\B)U(B\A)=(AUB)\ (AN B).
Example 1.9. Let : E=7Z,A={-3,0,2,6} et B={-1,1,2,6}, then we have :
AArB={-3-1,01}

Properties of Set Operations

Let A, B, and C be subsets of a set £. We have :

1. Commutativity :
ANB=BNA, AuB=BUA.

2. Associativity :
AN(BNC)=(AnB)nC, AU(BUC)=(AUB)UC.
3. Distributivity :
AU(BNC)=(AUuB)N(AUC), AN(BUC)=(ANB)U(ANC).
4. De Morgan’s Laws :
(AUB)*=A°NB°, (ANB) = A°UB"

Démonstration. 6. Show that : (AU B)¢ = A°N B° It must be shown that : (AU B)° C A°N B¢
and A°N B¢ C (AU B)“.
— (AUB)*C A°N B°:
Let r € (AUB) =2 ¢ (AUB) =2 ¢ ANx ¢ B=x € A° Nz € B¢ as well as
r € (AUB) = x € (A°N B°), from where (AU B)® C (A°N B°).
— A°NB°C (AUB)°
Let x € (A°NBY) =€ AN eB =x¢ ANac ¢ B=x ¢ (AU B),d where
A°N B C (AU B)®, then (AU B)° = A°N B°.
[

1.1.5 Cartesian Product

Definition 1.10. For two sets A and B, the Cartesian product is the set of all pairs (a,b) with
ac€Aandbe B :
Ax B={(a,b)|ac A, be B}.

Example 1.10. Let : A= {1,2}, B ={1,2,3}

Ax B ={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)},
BxA={(11),(1,2),(21),(2,2),(3,1),(3,2)},
AxB#BxA, car (3,2) € Bx A, and (3,2) ¢ Ax B.
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1.2 Functions

Definition 1.11. A function from a set E to a set F is a correspondence f that associates
to each element x € E one and only one element y € F.
The set E is called the domain, and F is called the codomain. The element y of F associated

with an element x of E is denoted by y = f(z).
y = f(z) is called the image of x, and x is called a preimage (or antecedent) of y. We write :
fE— F
r—y = f(z)
Example 1.11. 1. Consider the following functions :

f:N— N
n——2n+1

g:R— R
r— 22,

r+—x.

Idg is called the identity function on E.

2. The correspondence :
fR—R

1
T — —.
x

s not a function, since the element 0 has no image in R.

1.2.1 Direct Image and Inverse Image

a) Direct Image

Definition 1.12. Let f : E — F and A C E. The direct image of A by f, written f(A), is the
set of all images of the elements of A by f :

f(A) ={f(z) e F |z € A}.
Example 1.12. Let f be the function defined by :

f:10,3] — [0, 5]
r— f(x)=22+1

— Let’s calculate f({2}) :
F{2h) ={f(@) [z e {2}} = {20+ 1]z =2} = {[(2)} = {5}.
— Let’s calculate f(]0,1]) -

F([0,1]) ={f(z) [z €[0,1]} ={2z+1 |0 <z < 1}.
Since 0 < <1=0<2r<2=1<2r+1<3,
then £([0,1]) = [1,3] C [0,5].
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b) Inverse Image

Definition 1.13. Let f : E — F and B C F. The inverse image of B by f, written f~(B),
is the set of all x in E such that f(x) is in B :
f(B)={z € E| f(z) € B}.
Example 1.13. Let f be the function defined by :
f:10,2] — [0, 4]
w— f(a) = (v - 1)*
1. Let’s find f~1({0}) :
FHH0N ={z €0,2] | f(2) € {0}} ={z €[0,2] | f(z) =0} = {z €[0,2] | (z—1)* = 0} = {1}.
2. Let’s find f~1((0,1)) :
F7H(0,1)) = {z €[0,2] | f(z) € (0,1)}
={rec[0,2]|0< (z—1)?<1}.
We have (x —1)? > 0 for all z € [0,1) U (1,2].
Also, (z =1 <1=|z-1<l=-1<z-1<1=0<z<2.
Combining both, we get :
f_l((()? 1)) = ([07 1) U (1’2]) n (Ov 2) = (07 1) U (1v 2)'
Proposition 1.1. Let f : E — F. Then :
1. If AC B, then f(A) C f(B).
2. f(AUB) = f(A)U f(B).
3. f(ANB) C f(A)N f(B).

Démonstration. 1. Let y € f(A). Then there exists x € A such that f(x) = y. Since A C B,
we have x € B, hence y = f(z) € f(B). Therefore, f(A) C f(B).

2. Let’s show that f(AU B) C f(A)U f(B).

y € f(AUB) < Jz € AU B such that f(z) =y
& @reA f(@) =y @B f(z)=y)
sye f(A)Vye f(B)
< ye f(AUf(B).
The reverse inclusion f(A) U f(B) C f(A U B) is proved in the same way. Hence,
f(AUB) = f(A) U f(B).

3. Let
y € f(ANB) = Jx € AN B such that f(z) =y

= (Jz € A, f(z) =y) N (3z € B, f(z) =y)
=y € f(A) Ay e f(B)
=y € f(A) N f(B).
Therefore, f(AN B) C f(A)N f(B).
]

Example 1.14. Let f(x) = 2%, A=[-1,0], B=[0,1]. Then AN B = {0}, f(A) =[0,1], and
f(B) =[0,1].

fLANF(B)=10,1], f(ANB) = f({0}) ={0} #[0,1] = f(A) N f(B).
The equality f(AN B) = f(A) N f(B) holds only when f is injective.
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1.2.2 Injection, Surjection, Bijection

Let E and F' be two non-empty sets, and let f be a function from F to F.

a) Injection
Definition 1.14. A function f is injective (or one-to-one) if each element of F has at most
one preimage in E. That s,

f is injective < Vri,x0 € B, f(21) = f(22) = 11 = 29,

or equivalently,

ry # 13 = f(11) # f(22).

Example 1.15. Are the following functions injective ?
1.

A NN
n+— 3n+ 5.
f1 is injective because : ¥ni,ng € N; fi(ny) = fi(ng) = 3n1 +5=3n2+ 5 = 3n; = 3ny = ny = n;

fo : R > RT
.T'—>.CE2.

fo is not injective because —1 and 1 have the same image.

b) Surjection

Definition 1.15. A function f is surjective (onto) if every y in F is the image of at least
onex in E :
Yy € F, 3z € E such that y = f(x).

Example 1.16. Are the following functions surjective ?

1.
fi:N—=N

n——3n-+5

f1 is not surjective. Suppose it is surjective, that is :

-5
VyEN,EIneN:y:3n+5:>n:yT.

But n = yT_‘r’ s not always a natural number, which is a contradiction. Therefore, fi is

not surjective.

fQZR%RJF
I'—>ZU2

f2 is surjective because every element of RT has at least one preimage in R.



c) Bijection
Definition 1.16. A function f is bijective (or a bijection) if it is both injective and surjective.
That is, every element of F' is the image of one and only one element of E :

f is bigective <Yy e F, Iz € E:y= f(x).

Example 1.17. 1. fy is not bijective because it is not surjective.

2. fy 1s not bijective because it is not injective.

3. Let
fa:R— R

r+— 2z +1

f3 is bijective because :
— it is ingective : if f3(x1) = f3(x2), then 2z1 + 1 =229+ 1, s0 21 = 9
— it 1s surjective : for every y € R, we have y = 2z + 1, which gives © = yT_l € R.

Remark 1.4. If f is bijective, then there exists an inverse function f=* from F to E, and
(fH'=r
Example 1.18. The function fs is bijective, and its inverse is defined by :

fi':R—R

y—1
—_
y 2

1.2.3 Composition of Functions

Definition 1.17. Let E, F', and G be sets. If f : E — F and g : F' — G, then the composition
of f and g, written g o f, is the function from E to G defined by

(g o f)(x) = g(f(x)).

Example 1.19. We consider the following functions :

f:R—R g:R— R
r— 22 rr—x+ 1.
Alors :
gof:R—R
zr— 22+ 1.
et

fog:R— R
z—s (z+1).

It is clear that : go f # fog.

Proposition 1.2. 1. If f and g are injective, then g o f is injective.

2. If f and g are surjective, then go [ is surjective.



Démonstration. 1. Suppose that f and g are injective. Let us show that g o f is injective.

Let x1, 29 € E such that

go f(z1) =go f(x2).
Then

9(f(x1)) = g(f(22)).
Since g is injective, we have

flar) = flaz).
As f is injective, it follows that
T1 = Xa.

Hence, g o f is injective.

2. Suppose that f and g are surjective, that is, f(£) = F and g(F) = G.
Let us show that g o f is surjective. We have

go f(E)=yg(f(E)) = g(F) =G,

by the surjectivity of f and g. Therefore, g o f is surjective.

Remark 1.5. It follows that the composition of two bijections is a bijection.
In particular, for f : E — F and its inverse f~' : F — E, we have

fltof=1Idy and fof'=Idp.

Proposition 1.3. Let f: E — F and g: F — G. Then :
1. If g o f s injective, then f is injective.
2. If go f is surjective, then g is surjective.

3. If go f s bijective, then [ is injective and g is surjective.
Démonstration. 1. Let x1, 29 € E such that f(z1) = f(z3). Then

9(f (1)) = g(f(x2)).

Since g o f is injective, we have x1 = x9. Hence, f is injective.

2. We have f(F) C F = gof(E) C g(F) C G. Since go f is surjective, we get go f(EF) = G,
which implies G C g(F). Therefore, G = g(F'), and thus g is surjective.
[

1.3 Binary Relations

Definition 1.18. A relation from a set E to a set F' is a correspondence R that links elements
of E with elements of F.

If x is related to y by R, we write vRy.

If E = F, the relation R is called a binary relation.

Example 1.20. 1. Forall z,y € N, let xRy & = divides y. Then R is a binary relation.

2. Forallz,y €R, let xSy & 2> +1=y?> + 1. Then S is a binary relation.

3. Let P(E) be the set of all subsets of a set E.
For all A,B C P(E), let ATB < A C B. Then T is a binary relation.



1.3.1 Properties of Binary Relations
Let 'R be a binary relation on a set F, and let x,y, z € E. We say that R is :
1. Reflexive : Vo € F/, xRzx.
2. Symmetric : Vz,y € E, 2Ry = yRx.
3. Antisymmetric : Vz,y € E, (zRy) A (yRz) = (v = y).
4. Transitive : Vz,y,z € B, (2Ry) A (yRz) = (2Rz).

1.3.2 Equivalence Relation

Definition 1.19. A binary relation R on a set E is an equivalence relation if it is reflexive,
symmetric, and transitive.

Example 1.21. Let R be a binary relation on R defined by :
Ve,ye R, 2Ry x+1=y+ 1.

Let us show that 'R is an equivalence relation :

a) R is reflezive : Vo € R, zRuz.
Indeed, xRx <= x+1=x+ 1= 0=0, which is true.
Therefore, R 1is reflexive.

b) R is symmetric : Vz,y € R, 2Ry = yRz.
We have xRy ez +1=y+1&y+1=2+1= yRx.
Therefore, R is symmetric.

c) R is transitive : Vz,y,z € R,

{ny’ = rRz.
yRz

We have

Ry < 1= 1,
{x Y T yt szs+1l=z+1< 2Rz

YRz y+1=2+1,
Therefore, R is transitive.

Hence, from (a), (b), and (c), R is an equivalence relation.

Equivalence Class

Definition 1.20. Let R be an equivalence relation on a set E. The equivalence class of
x € F is the set

r={ye E|2Ry}.

Remark 1.6. The set of all equivalence classes of elements of E is called the quotient set of
E by R, and is denoted by E/r :

Ewg={2|zec L}
Example 1.22. Let R be the binary relation on R defined by :
Vr,y eR, 2Ry < 2> —z =vy> —y.

R is an equivalence relation because :
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1. V2 €R, 22 —x = 2% — v & 2Ra. Hence, R is reflezive.
2. Vr,yeR, 2Ry e 1> —x =y’ —y < y> —y=2°> — v & yRa. Hence, R is symmelric.

3. Vr,y,2 € R, (zRyANyRz) & (2?—x = y*—yAy’—y =22—2) = 2~z =2*—2 & zRz.
Hence, 'R is transitive.

Now, let us find the following equivalence classes : Cy, 1, 2, and C%.

1. Co={y € E|0Ry}, and 0Ry & y* —y = 0, hence Cy = {0, 1}.

2. 1={y€e E|1Ry}, andy> —y=1—1=0, hence 1 = {0,1}.

3. 2={y € E|2Ry}, and y*> —y = 2, hence 2 = {—1,2}.

4. Cy ={y€e E| iRy}, and y* —y =1 — 1 = —1, hence Ci = {i}.
1.3.3 Order Relation

Definition 1.21. Let E be a non-empty set. A binary relation R on E is called an order
relation if it is reflexive, antisymmetric, and transitive.

Example 1.23. Let R be the binary relation on E defined by :
VACEVNBCE, ARB< ACB.

Let us show that R is an order relation :

a) Reflexive : YA C E, A C A. Hence, R is reflexive.

b) Antisymmetric : YVA,B C E, (A C BAB C A) = A= B. Hence, R is antisymmetric.
¢) Transitive : VA, B,C C E, (AC BAB CC)= ACC. Hence, R is transitive.
Therefore, from (a), (b), and (c), R is an order relation.

Definition 1.22. An order relation on a set E is called a total order if any two elements of
E are comparable, i.e., Vx,y € E, we have xRy or yRx. An order relation that is not total is
called a partial order.

Example 1.24. 1. For all x,y € R, let ¥Ry < x < y. This s a total order relation
because :

Reflexive : Ve € R, x <z < xRx.

Antisymmetric : Vz,y € R, (tRyANyRz) < (x <yAy<z)=zx=1.

Transitive : Vr,y,z € R, (xRy AyRz) & (x <yAy<z)=z<zE 2Rz

Total : Vx,y e R, x <y ory < x, so R is a total order relation.
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