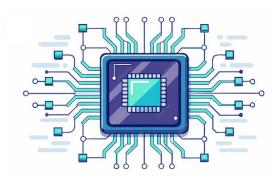
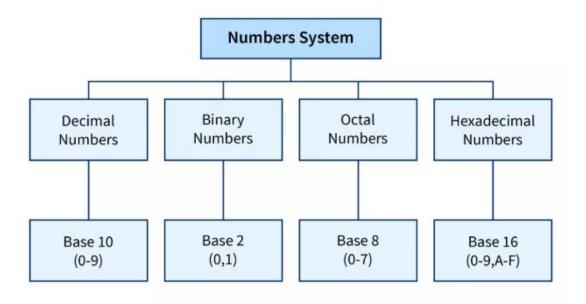

Ministry of Higher Education and Scientific Research العلمي البحث و العالى التعليم وزارة


BADJI MOKHTAR-ANNABA UNIVERSITY UNIVERSITE BADJI MOKHTAR-ANNABA

جامعة باجي مختار-عنابة

Faculty of technology
Electronics departement
Microcontrollers and Microprocessors course

Microcontrollers and Microprocessors Course 1: Reminder


Teaching byDr. MERABTI Nardjes

L3 AUTO
Promotion: 2025/2026

Course Reminder: Basics Before Microprocessors & Microcontrollers

Numbers system

Types of Number System

Why numbers system are matter in Microprocessors & Microcontrollers

- •Binary: Everything inside the processor is binary—it's the language of the machine, Data is stored and manipulated in binary
- •Hexadecimal: Used to simplify long binary numbers, Memory and registers) addresses are often shown in hexadecimal
- •Octal: Useful for grouping binary bits (especially in older systems or low-level programming).
- •Decimal: Used for input/output and user-facing data.

Decimal (Base 10)

This is the number system we use every day: 0 to 9

• Example:

25, 100, 2025

Microprocessors convert decimal numbers into binary to process them

❖ Binary (Base 2)

Used inside the microprocessor

Only two digits: 0 and 1

Everything—numbers, instructions, data—is stored and processed in binary

• Example:

1010 (binary) = 10 (decimal)

❖ Octal (Base 8)

Octal uses 8 digits: 0 to 7

It's a shortcut for binary, just like hexadecimal Each octal digit represents 3 binary bits

- Example:
- Binary: 11001000
- Group into 3 bits: 011 001 000
- Octal: 310
- Decimal: 200

Hexadecimal (Base 16)

Used to simplify binary

Digits: 0–9 and A–F (A=10, B=11, ..., F=15)

Easier to read and write than long binary strings

• Example:

FF (hex) = 255 (decimal) = 11111111 (binary)

If you want to store the number 200:

Decimal: 200, Binary: 11001000, Hexadecimal: C8

BCD = Binary Coded Decimal.

It means each decimal digit (0-9) is written in binary using 4 bits.

BCD is mainly used in microprocessors/microcontrollers for display purposes (digital watches, calculators, etc.), because it is easier to handle each digit directly.

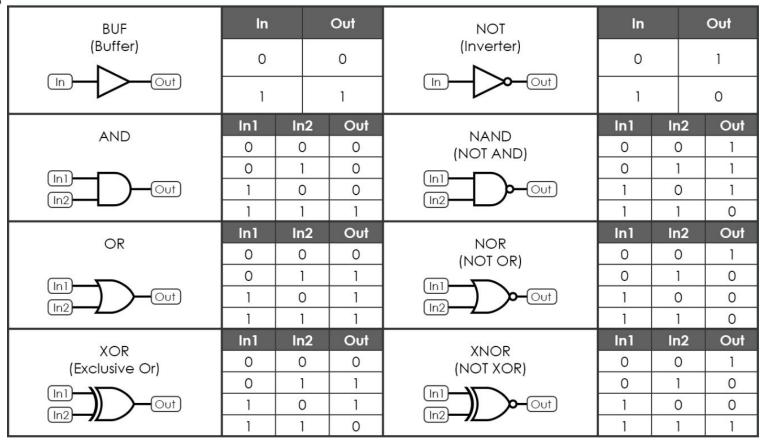
• Example: Decimal 59

"5" \rightarrow 0101 in binary

"9" \rightarrow 1001 in binary

So in BCD: 59 = 0101 1001

Decimal Base-10	Binary Base-2	Octal Base-8	Hexa Decimal Base-16
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10


Decimal	Binay (BCD)		
	8 4 2 1		
0	0 0 0 0		
1	0001		
2	0 0 1 0		
	0 0 1 1		
4 5	0 1 0 0		
5	0 1 0 1		
6	0 1 1 0		
7	0 1 1 1		
8	1000		
9	1001		

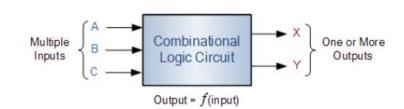
Digital Logic: A logic gate is a small digital circuit that performs a basic operation on binary inputs (0 or 1) and gives a binary output. Microprocessors and microcontrollers are made of millions of these gates.

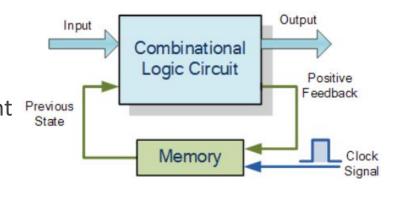
Logic gates allow microprocessors and microcontrollers to:

- ✓ Calculate, decide, store, and communicate
- ✓ Transform simple signals into complex actions
- ✓ Form the foundation of all digital intelligence

Combinational Logic

Combinational logic is a type of digital circuit where the output depends only on the


current inputs:


- No memory
- Output changes immediately when inputs change
- Used for simple operations like calculations and selections

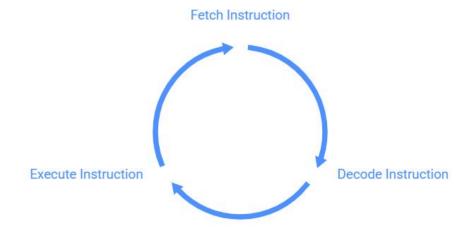
Exemple: Multiplexers, Decoders

Sequential Logic

Sequential logic is a type of digital circuit where the output depends on current Previous inputs and past states (memory), Often works with a clock signal and used for systems that change over time

Exemple: Counters, Registers

Why Sequential Logic matters for MP & MC?


Microprocessors and microcontrollers are sequential machines,

They use clock, registers, counters to:

Fetch instructions decode them, execute in order and finally store results,

These are the memory + timing building blocks that make processors work

step by step.

Data Units – Basic Concepts

Computers work with data in the form of bits (0s and 1s). Larger units are built from bits.

- 1. Bit (b) → The smallest unit of data, value is either 0 (low/off) or 1 (high/on).
- Example: Light switch (ON = 1, OFF = 0).
- 2. Nibble \rightarrow A group of 4 bits. 1 0 1 0

Range: 0000 (0 in decimal) to 1111 (15 in decimal).

Used often in hexadecimal representation.

Example:

1010 (binary) = 10 (Decimal) = A (Hex).

3. Byte (B) \rightarrow A group of 8 bits = 2 nibbles.

0 1 0 0 0 0 1

Most common unit in computers, Bytes are the dominant unit of measurement for calculating quantities of data or storage capacities. abbreviated with "B". Unlike **the bit**, which can only represent one of **two states**, the byte can represent 256 (28) states (0–255).

• Example:

01000001 = 65 (Decimal) = Letter "A".

4. Word → A group of 16, 32, or 64 bits, depending on the processor.

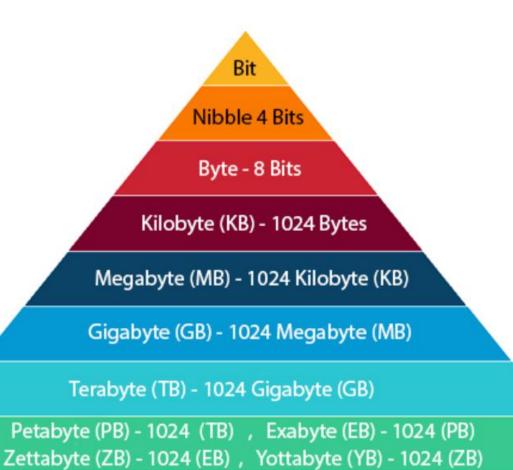
The word size determines how much data the processor can handle at once.

• Example:

32-bit CPU \rightarrow Word = 32 bits.

64-bit CPU \rightarrow Word = 64 bits.

5. Storage Units → Since bytes are small, bigger multiples are used:


- \rightarrow 1 Kilobyte (KB) = 1024 Bytes
- \rightarrow 1 Megabyte (MB) = 1024 KB
- \rightarrow 1 Gigabyte (GB) = 1024 MB
- \rightarrow 1 Terabyte (TB) = 1024 GB

• Example:

1 text page ≈ 2 KB

1 photo ≈ 3 MB

1 movie ≈ 2 GB

