
Badji Mokhtar-Annaba University Department of Electronics 3rd Year License in Automatique (S5)

TD 2
Linear Systems Control (LSC)

Exercise 1:

The Bode diagram of the system is given by:

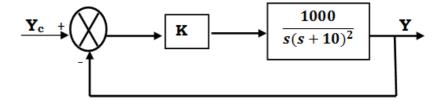
- 1- Is the system stable?
- 2- Give the corresponding gain and phase margins.

Exercise 2: We consider a transfer function system:

$$G(p) = \frac{2 \times 10^6}{(p+100)^3}$$

Calculate the gain and phase margins for this system.

Exercise 3:


We consider a transfer function system:

$$G(p) = \frac{K}{p(p+100)^2}$$
 with $K > 0$

Determine the conditions on the value of K so that the system is characterized in a closed loop with unity feedback by a phase margin $\Delta \varphi \ge 45^{\circ}$ and a gain margin $\Delta G \ge 6 \ db$.

Exercise 4:

We want to have a phase margin of **45**°, find the value of K.

