UNIVERSITE BADJI MOKHTAR — ANNABA
Faculty of Technology

Computer Science Department

Text Book

Algorithms and Data Structure 1

What is Algerithm?

PN
S o rubes ™,

7 A7 ooblainthe s i ¥
III." Inpist H axpaciag oulput)—n"' Dutpat .-':
L \‘\\"r-wlhr gwan o~ i !

., Inpul s
\.\ (__/
g

Algarithm

LT)
i}(:l/

Pr. Halima BAHI

Bachelor 1% year

2025 /2026

Table of Contents

Chapter 2 : Sequential AlGOTIthMSooii e e e e e e e e e ebee e e e sareeas 5
O N F-Jo T o oY o t VAl o =7 o o [URP 5
2 FAN F=ZoT 1 a0 W @(oT 1 g o o] g T=T o | &3PPSR 5
3. Data: Variables and CONSTANTSeevviiiiiieiiie ettt ettt et e sre e sar e sreesmeeesabeeeane 5
4 Ny 10T Y 0o W oY g T o[YL AV o =TSR 7

4.1. The tYPe INTEGER ...ttt et ettt s 7
8.2, THEEYPE REAL .o eee e e s seesees e s eee e s eeeeeeseeeeseeseseaesesaesseesesesneeneseeeens 7
4.3, ThEtype BOOLEANoiuieeeeeeeeeeeeeeeeeeeeeeee e eseeeee e s eee s st ees e eees e e esaesseeseseenesseseseens 8
A4, TREEYPE CHAR ..ot e e ee et ees e e ees e e es e sses s eeseeneseeeens 8
4.5, THE TYPE STRING ...oeeeeee ettt e e et e e e ettt e e e e eabe e e e esabaee s eenbeeeeeenbaeaeennnenas 9
T - b T (ol o] o 1=] =Y [o] K3 PPNt 9
5.1. YN 1d o g T=Tn ol o] o J=T =) o - SRR 10
5.2. Boolean operation and COMPAriSONiiiiciiieiiiiiie ettt e e sbre e e e ssaaeeeeenes 10
6. BaSiCINSTIUCHIONS..cciiiiiiiiiiiee e s 10
6.1. The reading iNnStruction (READ)........ceicciiiieiecieee ettt e et e e e e tre e e e eatae e e entaeaeeanes 11
6.2. The writing inStruction (WRITE).......ooiiiiiii ettt eettee et e e e etre e e e eare e e e earaeeeeanes 11
6.3. ThE @SSIZNMENT (€7) coiiiiiieeieiiiee ettt e et e e et e e e e bte e e e e bae e e e ebteeeeebteeeeeseneaesanes 12
7. Examples of @lgOrithmsooo i et e 13
8. FIOW CRAIT et 14
8.1. FIOWCRAIt SYMDBOIS ..eeiieiiieecieee et e s e e e sbre e e e saraeeesanes 14
8.2. T [0] o] [P PUPPPRt 14
1S T I o =X Ol =Y o V(U= - OSSR 14
9.1. SErUCtUIE Of @ C PrOSIaM ..uveii ettt ettt et e e et e e e e tte e e e eabaeeeeabeeeeeenbaeeeenanenas 15
9.2. D = TN 1Y/ o T3 | o N GRS P PP PRUUPPPN 18
9.3. ASSIZNMENT AN EXPIrESSIONS....uiiiiiieiieeeceitee e cettee e et e e eetre e e e sbe e e e esbee e e e sbeeeeesbeeeeenaseeas 19
9.4, Input and OULPUL INSEFUCHONS...ccuviiii e e e 21

Chapter 3: CoNTrol STAtEMENTS.ccicciiiee ettt e e e et e e e ette e e e eebteeeesbteeeesseeeeseseeeesssseeeesnes 23

1. The if / then / else StatemMENt ..o eeeeeieeeie ettt e e e e ettt e e e e s e e et e ereeesssasaareeeeees 23
1.1. The if / then STAtEMENT ...ciiieviee ettt ettt ettt e e st e e e s e bt e e s sebaeessaabaeessssbeeessanns 23
1.2, If /TN / €150 STAtMENT ..eiiiieeiieeeeeee ettt ettt ettt ettt e et e e s eabe e e s etbeeesssbeeesasaaeeesas 23
1.3. The nested if / @1Se StAtEMENT ..ccivi ittt ettt e et e e e e e eaeeereeeseseseaaereeesssanas 24

2 \Y/ (V] 1 n] o] [=Iel g Vo Tol cIRY=Y [T o1 n o o XSS 24

3. Flowchart with conditional StatEMENTevvveviiiiiiiiiiiii e aaaaaaaaaes 25

4. Conditional statements iN C Programscccueeeiecieeeiiiieeeeiieeeessieeeessreeesesbeeeessbeeesssreeessssseeas 25
4.1. =N o £ =Y3] (o [PPSRt 25
4.2, A=Y Y= €= 1 =Y 011 0 ST T T T TP 26
4.3. SWIECR et st et et s st st 27

(0 g =T o) {1 o S e Yo o LT PRSPPI 28

N |01 o o [F ot o] o VUNR U U O PP PO TSP PP ST UUTOTOURRUPRIN 28

D I o T o Tl [e Yo o F USRI 28

T I o T=IN Y 1 L= Vo Yo« NS URR 29

O | (=N 21T o Y=o [l Lo Yo T« TSR 30

ST 1 - (o= o] il (oo T o I =) (=T ol U o) o F SRR 30

LT 1o 11 1 (<IN (o Yo o L PSP 31

N 115 =T i (o o o L PSP 31

S T Moo o I [o IOl o] o = =1 1. YRR 32
8.1. B T e g (o Yo o USRSt 32
8.2. I TS 11 L= Lo Yo o PRSP 32
8.3. BTSN Lo I o 11 =20 [Yo o PSRRI 32

Chapter 5 1 ArTay SEIUCTUIE ..ooeieeeeecciiee ettt e e ettt e e ee e e e e et e e e e e bt e e e seabtaeeeebeseeeesaseeeassseesassasessnssenessnes 34

Lo INEFOTUCTION ittt sttt sttt b e bt e s bt e s bt e et e et e e nbeesbeesaeesanenas 34

D o 1= Vo = 1YL 34
2.1. CrEATING AITAYS ceeeiii ittt e ettt e e e e e sttt e e e e e s s abbbt et eeeeessasbssaeaeeessssssssraaaeeeessssnsnnns 34
2.2 ACCeSSING Array El@MENES c..vviiiiiee e e 35
2.3. F N V- F=o] a1 o1 SRR 36
2.4, Y (] 18- 0 - 2SS 37

3. SOITING AITAYS toeeiiiiittieeeeeeiiitt et e e e e e ssrtr et e e e e s s s s tbbtaeeeeeessasaabaaaaeeesssssssbaaaeeeesssassssraneeesssnssnsnnns 38
3.1. Y= (=Tl n o I T o] o O PP SROP PRSPPI 38
3.2. BUBDIE SOM .. s 39
3.3. INSEITION SOMT . e s e s smene e s snee 40

4. 2-Dimensional arrays (MatriCeS)......cuu it e i eiieeeeeciee e eetee e et e e eetee e e eebte e e e ebae e e e e btee e eeabeeeeenasenas 41
4.1. Accessing elements 0f @ MaAtriXcocciiiiiiciee e 41
4.2. OPErations ON MAtIIXES c.oveeeeeeiieieieee e e e e e e e e e e e e e e e e e e eeeeeeas 42
4.3. FAN g =NV [O o] o =1 =] o N 43

Chapter 5 : EnNUMerations and StrUCLUIESciiiii i ettt e e e e e e e ee e e e e e e e nnneeeeee s 46

O Y 0 T¥] o T=T ¢ | n (o o PP PP PR OPPRRON 46
1.1. ENUMEIatioNS...ccoviiiiiiiiiiiii e 46
1.2. ENUMErations iN Cu...ciiviiiiiiiiiiiiiiiiiiii e 46

2.

2.1.
2.2.
2.3.
2.4.
2.5.

SETUCTUTES ettt e et e e e et e e s eab e e e s et e eesatasessasan e sasaeesesaaserssnanerernneessenes 47

Declaration of RECOIAS/STIUCTUIESocuveiiiiiiieeieteiee ettt ettt e ettt e s st e e sbre e e s seaaeeessnes 47
Accessing the fields of @ StrUCUIEceviiiiiei e 48
ATTaY OF STTUCTUIES ottt ettt e e e tre e e e e te e e e et ee e e e abae e e eeabaeeeennsenas 48
OPErations ON STFUCTUIES ..ccceeeieeieie e 48
SEPUCTUIES 1N ettt e st e e st e e st e e s e mr e e s e nree e e enreeas 49

Chapter 2 : Sequential Algorithms

1. Algorithm vs Program

An algorithm is the precise description of the method of solving a problem in the form of simple
instructions. An algorithm is characterized by:

e Identification of information involved in a program

e Abstraction: modeling, formalization and representation of this information
e List of operations to be applied to this information.

e Definition of the order of operations to be respected.

Algorithmic Language: Any algorithm is expressed in a natural language called Language
Algorithmic or pseudo-language, it describes objects manipulated by the algorithm in a
structured, clear and complete manner as well as all the instructions to be executed upon these
objects to obtain results.

A program is the translation of an algorithm into a formal language that the machine can
understand and execute. This language is called a programming language, such as C, java,
python, etc. Programming languages are governed by a syntax just as much as the natural
language of man is.

2. Algorithm Components
An algorithm consists of three main parts:

e The header: this part is used to give a name to the algorithm. It is preceded by the word
Algorithm;

e The declarative part: in this part, we declare the different elements that the algorithm
uses (constants, variables, structures, procedures and functions.);

e The body of the algorithm: this part contains the instructions of the algorithm. It is
delimited by the words “Begin” and “end”.

3. Data: Variables and constants

Constants represent numbers, characters, strings of characters whose value cannot be modified
during the execution of the algorithm. Constants are introduced by the keyword “Const” as:

const name_identifier = value ;
Example:
const pi=3.14;

Variables can store digits, numbers, characters, character strings, etc. whose value can be
modified during the execution of the algorithm.

The variables, elements that values may change during the execution, are introduced by the
keyword “Var” as:

var name_identifier : type ;

Constants as well as variables are designed by identifiers. Herein, an identifier is a name that
follows a particular syntax. The rules for identifiers vary slightly depending on the specific
programming language, but here are some general guidelines that apply to most languages:

Identifiers must consist of letters (both uppercase and lowercase), digits (0-9), and
underscores ().

The first character must be a letter or an underscore.
Identifiers cannot contain spaces or other special characters.

Identifiers can be of varying lengths, but there may be limitations imposed by the
specific language or implementation.

Some languages may have a maximum length for identifiers.

Identifiers cannot be the same as reserved keywords in the language. Keywords have
special meanings and cannot be used as variable or function names.

Some languages are case-sensitive, meaning that ‘“variable” and ‘“Variable” are
considered different identifiers.

Other languages are case-insensitive, meaning that both variable and Variable would
refer to the same identifier.

It is generally recommended to choose identifiers that are meaningful and descriptive,
making your code easier to understand and maintain.

Here are some examples of valid and invalid identifiers in most programming languages:

Valid identifiers:

number
my_number
Numberl123

_private_number

Invalid identifiers:

123variable (starts with a digit)
variable with space (contains a space)
$variable (contains a special character)

if (a reserved keyword)

By following these rules and guidelines, you can ensure that your identifiers are valid and
meaningful.

4. Standard primitive types

The type corresponds to the kind of information used. Standard primitive types are those types
that are available on most computers as built-in features.

The standard types in algorithmic languages include the whole numbers, the logical truth
values, and a set of printable characters. We denote these types by the identifiers INTEGER,
REAL, BOOLEAN, CHAR, and STRING (of characters). Each type has a set of operations.

4.1.The type INTEGER

The type INTEGER comprises a subset of the whole numbers whose size may vary among
individual computer systems. If a computer uses N bits to represent an integer in two's
complement notation, then the admissible values of x must satisfy -2N-1 < x < 2N-1. It is
assumed that all operations on data of this type are exact and correspond to the ordinary laws
of arithmetic, otherwise, the computation will be interrupted. This event is called overflow.

Example :
const COEFFICIENT =6 ;
TEMP =-273 ;

var mark : integer ;

The standard operators for integers are the four basic arithmetic operations of addition (+),
subtraction (-), multiplication (*) and division (/, DIV).

4.2. The type REAL

The type REAL denotes a subset of the real numbers. Whereas arithmetic with operands of the
types INTEGER is assumed to yield exact results, arithmetic on values of type REAL is
permitted to be inaccurate within the limits of round-off errors caused by computation on a
finite number of digits.

Example :
const PI=3.14 ;
var mean : real ;

The standard operators are the four basic arithmetic operations of addition (+), subtraction (-),
multiplication (*), and division (/).

4.3. The type BOOLEAN

The two values of the standard type BOOLEAN are denoted by the identifiers TRUE and
FALSE.

For example, if x has for value 3, and y is 4, the expression “x=y”” would be evaluated as FALSE.

4.4.The type CHAR
The character type is a finite and completely ordered set of characters (symbols). It includes:

e The letters of the Latin alphabet: a ..z, A .. Z.
e The numbers: 0 .. 9.

e Symbols used as operators: +- */<=> ..

e Punctuation characters: ., ;! ? ...

e Special characters: @ % & # ...

e And others.

The character set defined by the International Standards Organization (ISO), and particularly
its American version ASCII (American Standard Code for Information Interchange) is the most
widely accepted set. The table below shows the ASCII table with all 256 characters. They are
numbered from 0 to 255. Each character is stored in computer memory on one byte.

Table 1. ASCII Table

0 1) 20 3] 4 5| 6f 7| 8 9 10| 11] 12] 13| 14| 15] 16| 17| 18] 19| 20 2| 22| 23| 24| 25| 26| 27] 28] 29] 30| 31
(|NUL|SOR| STXETX | EOTIENQ| ACKBEL |BS |HT |LF |VT |FF |CR (SO |SI |DLE|DCI|DC2|DC3|DC4|NAK|SYN|ETB |CAN|EM |SUB|ESC |FS |GS |RS |US
Tl] [l
H
h

R "
4@ A 1B |C
%|' ¢
128
160

= | = |[w
™
-
[arp]

192
4

To determine the rank (the order) of a character ('A' for example) in the set of characters
represented in this table, one must add the two numbers found on the same line (in the first
column on the left) and the same column (in the first row at the top). Example: The rank of the
character 'A' is equal to 64 + 1 = 65.

A character of constant type is represented by one and only one character framed by two quotes.
Examples: ',a', 'b', 'C'", "', '#, ...

The operations defined by functions on the Character type are:

8

ORD(¢): This function returns a positive integer corresponding to the rank of the character c,
in all the characters.

Examples: Ord('!") = 33, Ord ('A") = 65, Ord (‘a') =97.

CHR(1): is the inverse function of Ord. For a positive integer i, it returns the character of rank
1.

Examples: Chr(33) ="!", Chr(65) ='A', Chr(97) ="a".

SUCC(¢): provides the character that immediately follows the character c in all the characters.
Examples: Succ('a') ='b', Succ('3') ='4', Succ('%") ='&'".

PRED(¢): provides the character immediately preceding the character ¢ in all characters. This
is the inverse function of Succ.

Examples: Pred(b') ='a!, Pred (4) = '3', Pred (&) =%

4.5. The type STRING
A string is a sequence of characters enclosed by two double quotes.
Examples: “Algorithmics”, “Ahmed Ali”, ...

The number of characters in a string is called length of the string. "Algorithmic" is a string of
length 13.

nn,

: represents the empty string of length 0. It does not contain any characters. We mention two
predefined functions on the strings

* length(str): it provides the length of the string str.

* concat(strl, str2): it provides the string obtained by concatenation of the two strings strl and
str2.

Example: concat("Module", "Algorithmic") = "Algorithmic Module”

In summary, each type has a particular size and representation in computer memory. The
different forms of constants should not be confused.

Example: 3 (integer type), 3.0 (real type), '3' (character type) and "3" (string type).

5. Basic operations

An expression is a serie of operations applied to a set of factors (arguments or parameters).
Each expression has a value and a type.

If an expression contains several operators with the same priority, these operators are left
associative.

Example:

The expression: X +Y * Z , leads to the evaluation of X + (Y * Z).

In case, one wish to modify the semantic induced by this rule, parenthesis have to be used.

5.1. Arithmetic operations

The standard operators are the four basic arithmetic operations of addition (+), subtraction (-),
multiplication (*) and division (/, DIV). Whereas the slash denotes ordinary division resulting
in a value of type REAL, the operator DIV denotes integer division resulting in a value of type
INTEGER.

If we define the quotient @ = m DIV n and the remainder r = m MOD n, the following
relations hold, assumingn>0: q*n+r=mand 0 <r<n

Examples: 31 DIV10=3;31MOD 10=1;-31 DIV10=-4;-31 MOD 10=9

5.2. Boolean operation and comparison

The Boolean operators are the logical conjunction, disjunction, and negation whose values are
defined in Table 2.

Table 2. Logical operators

A B Aand B | Aor B | Not(A)
True | True | True True False
True | False | False True False
False | True | False True True
False | False | False False | True

Note that comparisons are operations yielding a result of type BOOLEAN. Thus, the result of
a comparison may be assigned to a variable, or it may be used as an operand of a logical operator
in a Boolean expression.

For instance, given Boolean variables p and q and integer variables x =5,y =8, z= 10,
the two assignments:

pisx=y,and qis (x <y) AND (y <z)
yield p = FALSE and q = TRUE.

Comparison operators are: <, >, =, #, <, >

6. Basic instructions

In algorithmics, there are three elementary instructions: read, write and the assignment (<).
Each instruction is followed by a semicolon (;) to specify its ending.

10

6.1. The reading instruction (READ)
The READ instruction allows us to give a value to a variable from the keyboard.

Syntax: read(variableName);

Example: read(A) ; read(B) ; read(C) ;

Several successive reading instructions can be grouped into a single instruction. For the
previous example, we can replace the three read instructions with: read(A, B, C);

On a computer, when the processor receives the read(variableName) order, it stops
execution of the program and waits for a value. The user must then enter a value from the
keyboard. As soon as the entry is validated (by pressing the Enter key ¢), execution of the
program continues. The value passed by the user is assigned to the variable and overwrites its
previous value.

The read(variableName) instruction leads to an error if the value entered does not match
the type of the variable, unless it is an integer value and the variable is of real type. In which
case the integer value is converted to a real value.

6.2. The writing instruction (WRITE)
The write instruction allows display on screen. There are two types of display:

e Either we display the value of a variable or an expression:
Syntax: write(variableName);

Example:
write(X);
write(2*X+Y);
If X =10 and Y= 5 then, the first instruction displays 10 and the second displays 25
e Either we display a text (a message):
Syntax: write (“a message”);

Example: write("The result is =");

Several successive writing instructions can be grouped into a single instruction. For example,
the sequence of instructions:

Example :
write (“The result is ="); write (X);
Can be replaced by: write (“The result is =", X);

This instruction displays the message : Result is =10.

11

Note: Message communication is very useful in programming. It offers the possibility:

e To guide the user by telling him what the machine expects of him following a reading
order.

e To show the results of a treatment
6.3. The assignment (<)
Assignment is a statement that stores the value of an expression in a variable.

Syntax: variableName <« expression;

This statement specifies that the variableName receives the value of expression.

Examples:
Instruction Expected result
X«17; A constant value 1is assigned to the variable
X (X receives 7).
X<«7; The value of variable X is copied into
variable Y (Y receives X).
Z«2*X+T/Y,; Z receives the result of arithmetic operation
2*X+T/Y.
Remarks:

e If the variable already contained a value, it is replaced by the value of the expression.
The old value of the variable is lost and there is no way to recover it. (unless, it was
already saved elsewhere)

e A type check operation is performed before assignment. It is an error if the value of the
expression does not belong to the type of the variable, unless it is a value integer and
that the variable is of real type. In this case the integer value is converted to real.

Example :

Algorithm Permutation ;
var X, Y, Z : integer ;

Begin
read(X,Y);
2 X;
X<Y;
Y7,
write (X, Y) ;
End.

If the read values of X and Y are 17 and 10 respectively, what are the displayed values ?

12

7. Examples of algorithms

Example 1: The following algorithm displays a hello message.

Algorithm Hello_v1;
Begin

write ("Hello world");
End.

Example 2 : This algorithm welcomes the user.

Algorithm Hello _v2;

var name : string ;

Begin
write ("Please, enter your name ");
read(name);

write("hello ", name);
End.

Example 3: The following algorithm computes and displays the area of a rectangle

Algorithm Area_R;

var length, width, area : integer ;

Begin
write ("Enter the rectangle length: ");
read(length);
write ("Enter the rectangle width: ");
read(width);
area < length * width ;
write(“The area is : ", surface);

End.

Example 4: The following algorithm computes and displays the perimeter of a circle

Algorithm Perimeter_C;
const pi = 3.14;
var radius : integer ;
perimeter : real;
Begin
write ("Enter the circle radius: ");
read(radius);
perimeter <— 2 * pi * radius ;
write(“The perimeteris : ", perimeter);
End.

13

8. Flow chart

A flowchart is a diagrammatic representation of algorithm to plan the solution to the problem.
Constructed by using special geometrical symbols where each symbol represents an activity.
The activity would be input/output of data, computation/processing of data etc.

8.1. Flowchart symbols

Symbol Meaning
[) Begin / End
Operations, instructions, ...
/ / Input / Output
Relationship

<> Decision/Test

8.2. Example

Example of a flowchart that calculate the sum of two numbers.

Begin

|

read A, B

1

>
+
lov}

S«

writ

> I\‘A
al m |9
u

End

9. The C language

C is a general-purpose language, that has been around since the early 1970s. It's renowned for
its efficiency, portability, and flexibility, making it a cornerstone of software development.

The C programming language is considered a mid-level language, though it's often
described as leaning more towards a low-level language due to its close interaction with
hardware. Indeed, C provides direct manipulation of memory through pointers, bitwise
operations, and access to system-level functions. This allows for writing programs that operate
very close to the machine's hardware, similar to assembly language. C also has features of high-

14

level languages, such as structured programming, functions, and abstractions like data types
(e.g., arrays, structs), making it more accessible than true low-level languages like assembly.

9.1. Structure of a C program

The basic structure of a C program is divided into 6 parts which makes it easy to read, modify,
document, and understand. The six sections are: Documentation, Preprocessor section,
Definition, Global declaration, Main function, and Sub programs. While the main section is
compulsory, the rest are optional in the structure of the C program.

9.1.1. Documentation

Documentation consists of the description of the program, programmer's name, and creation
date. These are generally written in the form of comments.

In a C program, single-line comments can be written using two forward slashes i.e., /, and we
can create multi-line comments using /* */.

Example:

// This is my first program
/* I am Imad,
| am 1st year Bachelor student */

Both methods work as the document section in a program. It provides an overview of the
program. Anything written inside will be considered a part of the documentation section and
will not interfere with the specified code.

9.1.2. Preprocessor Section

All header files are included in this section which contains different functions from the libraries.
A copy of these header files is inserted into the code before compilation. The header files are
introduced by the C preprocessing directive “#include”.

Example :

#include <stdio.h>

#include <math.h>

There are various header files available for different purposes. Here are some examples of
header files in C:

e stdio.h: This header file contains declarations for standard input and output functions,
such as printf(), scanf(), and fopen().

15

e stdlib.h: This header file contains declarations for general utility functions, such as
malloc(), free(), and rand().

e math.h: This header file contains declarations for mathematical functions, such as sin(),
cos(), and log().

e string.h: This header file contains declarations for string manipulation functions, such
as strepy(), strcat(), and strlen().

e time.h: This header file contains declarations for time and date functions, such as time()
and strftime().

In addition to these standard header files, there are also many user-defined header files that are
available. For example, a header file for a linked list data structure might contain declarations
for the struct node type and functions for creating, inserting, and deleting nodes in the linked
list.

9.1.3. Definition

A preprocessor directive in C is any statement that begins with the "#" symbol. In particular,
the “#define” is a preprocessor compiler directive used to create constants, ie, “#define”
basically allows the macro definition, which allows the use of constants in our code.

Example :

#define PI 3.14159265358979323846

“#define” allows us to use constants in our code. It replaces all the constants with their
corresponding values in the code.

9.1.4. Global Declaration

This section includes declaration of global variables, function declarations, static global
variables, and functions.

Example:

1 const double PI = 3.14159265358979323846;
2 int my global wvariable = 10;

3 void my global function()

1]

5

Global variables and functions can be very useful, but they should be used with caution. If you
use too many global variables and functions, your program can become difficult to maintain
and debug. It is generally better to use local variables and functions whenever possible.

16

9.1.5. Main() Function

For every C program, the execution starts from the main() function. Thus, it is mandatory to
include a main() function in every C program.

The return type of the main() function can be either int or void. veid main() informs the
compiler that the program will not yield any value, while int main() indicates that the program
will return an integer value.

Example:

%int main() { printf("Hello, world!\n"):; return 0;
}

9.1.6. Sub Programs

Includes all user-defined functions (functions the user provides). They can contain the in-built
functions and the function definitions declared in the Global Declaration section. These are
called in the main() function. User-defined functions are generally written after the main()
function irrespective of their order.

Exemple:

“void my global function()

A little more sophisticated function would be:

dint add two numbers(int a, int b)
-return a + b; }
9.1.7. Example of C program

Here is the example of the simplest program, you can write:

#include <stdio.h>
#include <stdlib.h>

int main()

printf ("Hello world!\n"):
return 0;

WD =] Oy 0 s L [N

To execute a C program, one should follow these steps:

1. Compile the C program using a C compiler. The C compiler will convert the C source
code into machine code that the computer can understand.

17

2. Link the compiled C program with any necessary libraries. Libraries are collections of
pre-compiled code that can be used by C programs.
3. Execute the linked C program.

The execution of this program will produce the following display on the screen:

B ' "C\Nouveau dossier\TextBook\bin\Debug\TextBook.exe"

Process returned @ (@xe) execution time : ©.145 s
Press any key to continue.

9.2. Data type in C
C includes the following basic data types:

e int - stores whole numbers

e float - stores real numbers

e double - stores real numbers with higher precision than float
e char - stores single characters

e void - specifies that a function does not return any value

In addition to these basic data types, C also has a number of compiler-specific data types, such
as long and short.

Example :
int my integer variable = 10;
float my floating point variable = 3.141592653589793;
char my character variable = H

Tvoid my void function()

long my long integer variable = 123456
short my short integer variable = 1234

When choosing a data type for a variable, it is important to consider the type of data that the
variable will store and the operations performed on it. For example, if you need to store an
integer number, you would use an integer data type. If you need to store a real number, you
would use a floating-point data type.

18

Using the correct data type for your variables can help to improve the performance and
reliability of your C programs. Table 3 and 4 shows the integer and floating-point types in C,
respectively.

Table 3. Integer types in C

Type Storage size | Value range

char 1 byte -128 to 127 or 0 to 255

unsigned char | 1 byte 0to 255

signed char 1 byte -128 to 127

int 2 or 4 bytes | -32,768 to 32,767 or -2,147,483,648 t02,147,483,647
unsigned int 2 or 4 bytes | 0to 65,535 or 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

unsigned short | 2 bytes 0 to 65,535

long 4 bytes -2,147,483,648 to 2,147,483,647

unsigned long | 4 bytes 0to0 4,294,967,295

Table 4. Floating-point types in C

Type Storage size | Value range Precision

float 4 byte 1.2E-38 to 3.4E+38 6 decimal places
double 8 byte 2.3E-308 to 1.7E+308 15 decimal places
long double | 10 byte 3.4E-4932 to 1.1E+4932 | 19 decimal places

Besides these types, in C, Boolean is a data type that contains two possible values, i.e., true and
false.

bool trouve = true;

9.3. Assignment and expressions

Assignment is a fundamental operation in programming. Assignment in C is the process of
storing a value in a variable. To assign a value to a variable, you use the assignment operator

=)

We can also assign the value of one variable to another variable. Generally, the value is issued
from an expression.

An expression in C is a combination of operands and operators. Operands are the values
that are operated on, and operators are the symbols that perform the operations. Expressions

19

can be used to evaluate mathematical expressions, compare values, and perform other logical

operations. Here are some additional tips for using assignment in C:

e Only assign values to variables of the correct data type.
e Be careful not to overwrite the value of an important variable.

e Use parentheses to make your code more readable and to avoid errors. There are many

operators in C, in particular, we mention:
o Arithmetic Operators
o Relational Operators
o Logical Operators

Example:

int a, b:

float r:;
a=1;
b=a:

9.4.Type Conversion

Let’s consider the execution of the following program :

1 #include <stdio.h>

2 B2int main() {

3 int N;

4 float H;

5

6 printf ("Enter the number : ");
7 scanf ("sd", &N) ;

8

9 H=N/ 2 ;

10

11

12 printf ("The half is : %.2f£ ", H);
13 return O ;

14 }

When executed with 7 as input, the program outputs 3.00 as result. Indeed, H being a float and the
specified format requires two (2) digits after the decimal point. However, as the division operation
involved two (2) integers, the result is an integer, herein, 3.

Two ways exist to obtain a real as result. Implicit conversion and explicit conversion of types.

20

9.4.1. Implicit Type Conversion (Automatic):

This happens automatically by the compiler. It usually occurs when an expression has different data
types. To avoid data loss, the compiler converts smaller data types into the larger one. In other words,
all values are changed to the type with the biggest size.

In our case, the following change induces the implicit conversion, as 2.0 is considered as float.

8
9 H=N/ 2.0 ;
1N

9.4.2. Explicit Type Conversion (Manual):

Also called type casting, this is done by the programmer. The user manually tells the program
to convert a value from one data type to another specific type.

In our example, the following change

8
9 H = (float) N / 2 ;
0

Produces a real value of H, however, the type of N remains unchanged. The change means that,
the compiler temporarily treat N as a float for this calculation.

9.5. Input and output instructions

To perform the aforementioned read and write instructions, C offers the instructions “scanf”’
and “printf”’ respectively. these functions are inbuilt library functions, defined in stdio.h (header
file).

9.5.1. printf() function
The printf() function is used for output. It prints the given statement to the console.
Syntax: printf ("format string", argument_list);

The format string can be %d (integer), %c (character), %s (string), %f (float) etc.

9.5.2. scanf() function

The scanf() function reads formatted input from the standard input (usually the keyboard). It
takes a format string and a list of variables, similar to printf().

21

9.

5.3. Example of C program

I e e S o R T . T B O S S R

#include <stdio.h>

#define PI 3.141592653589793
Hint main() {

float radius, area;

printf ("Enter the radius of the circle: ");

scanf ("%f", &radius);

area= PI * radius * radius;

printf("The area of the girgke is : %.2f", area):;
return 0;

22

Chapter 3: Control Statements

Control statement structures require that the programmer specifies one or more conditions to
be evaluated or tested by the program, along with a statement or statements to be executed if
the condition is determined to be true, and optionally, other statements to be executed if the
condition is determined to be false.

Conditional statements in algorithms allow the algorithm to make decisions based on the
value of a Boolean expression. This means that the algorithm can choose different paths of
execution depending on whether the condition is true or false.

Conditional statements are one of the most important building blocks of algorithms, and
they are used in a wide range of applications, including sorting, searching, and graph
algorithms.

1. The if / then / else statement
1.1. The if / then statement

Sometimes, the execution of an action requires the fulfillment of a condition. In this structure,
a set of instructions is executed if a condition is verified. Its syntax is:

if (condition) then begin
//instructions to execute
end

The condition is a Boolean expression, which the evaluation leads to either True or False. The
condition is mainly defined using relational operators: =, #, >, <, >, and <. The simple
expression resulting on the use of these operators may be combined using logic operators: AND,
OR, and NOT.

Example:
if (A <>0)then
D=X/A;

1.2. if / then / else statement

The most common conditional statement is the if/then/else statement. This statement has the
following syntax:

if (condition) then Begin

// instructions to execute if the condition is true
End else Begin

// instructions to execute if the condition is false
End

23

Example 1:

if (number > =0) then Begin
write(“The number is positive”) ;
End else Begin
write(“The number is negative”) ;
End;

Example 2:

if (age >= 18 AND hasDriversLicense = TRUE) then
write("You are eligible to rent a car.")

else
write("You are not eligible to rent a car.") ;

Given that, age is an integer variable, and hasDriversLicense is a boolean variable.

1.3. The nested if / else statement

In the first example, if the number is null, it is considered as positive, to avoid this ambiguity,
one may use nested if statements. Indeed, nested if statements can be used to create complex
decision-making logic, but it is important to use them carefully. If you are not careful, it can be
easy to create nested if statements that are difficult to read and understand.

Example:
if (number > 0) then
write(“The number is positive”) ;
else
if (number < 0) then
write(“The number is negative”)
else
write(“The number is null”) ;

2. Multiple choice selection

When multiple choices are available, the use of an appropriate structure is suitable. Herein, a
conditional control structure is used when the processing depends on the value that a selector
will take. This selector is of integer, character or boolean type. The syntax is :

case (selector) of Begin
choicel: instructionsl
choice2: instruction?2

Default : instructionsN
End

24

3. Flowchart with conditional statement

The diamond shape is used to represent the true/false statement being tested in a decision
symbol. In the following is a flowchart that finds the biggest number among three given ones.

4. Conditional statements in C programs

In C programs the conditional statements are represented as follows:

4.1. If expression

if (expression) {
//code to be executed

The relational operators in C language are presented in the following table.

Meaning Operator

Equal to =

Not equal to I=

Less than <
Greater than >
Less than or equal to <=
Greater than or equal to >=

25

The logical operators in C language are logical AND (&&), logical OR (||), and logical NOT
(H).

4.2. If / else statement

if (expression) {
//code to be executed if condition is true
} else {

//code to be executed if condition is false

The if-else-if ladder statement is an extension to the if-else statement. It is used in the scenario
where there are multiple cases to be performed for different conditions.

if(condition1){

//code to be executed if conditionl is true
} else if (condition2){

//code to be executed if condition2 is true
} else if (condition3){

//code to be executed if condition3 is true

}else {
//code to be executed if all the conditions are false

Example 1:
#include <stdio.h>

Hint main() {

int number;

printf ("Enter the number: "):
acanf ("%d", &number) ;

=) if (number > 0){

printf ("The number is positive \n");
} else if (number < 0){

printf ("The number is negative \n");
} else |

printf ("The number is null \n"):
r }

return 0;

T 0o = O W o =] o U W b=

Example 2: Program that computes the solutions of the equation ax*+ bx + ¢ =0

26

4.3. Switch

The switch statement allows to select one of many code blocks to be executed. It is useful when
there are multiple cases to consider. The syntax in C is as follows:

switch (expression){
case x:
//code block
break;
casey:
// code block
break;
default:
// code block

}

e The switch expression is evaluated once

e The value of the expression is compared with the values of each case

e Ifthere is a match, the associated block of code is executed

e The break statement breaks out of the switch block and stops the execution

e The default statement is optional, and specifies some code to run if there is no case
match.

Example: The following program translates a grade into an assessment.

1 #include <stdio.h>

2

3 |Hwvoid main () {

4 char grade = i

5

6 |Hswitch (grade)

7 case

8 printf ("Excellent");
9 break;
10 case
11 printf ("Good") :
12 break;
13 case
14 printf ("Average") ;
15 break;
16 default :
17 printf ("invalid grade");
18 -1
19
N

27

Chapter 4 : Loops

1. Introduction

Sometimes, we repeat a specific code instruction multiple times to solve a problem until a
specific condition is met. This is known as iterations, which allows us to write code once and
execute it multiple times.

There are mainly three types of loops: For, While, and Repeat. Usually, loops have three
main elements which are:

Initialization: we assign an initial value to a variable used when evaluating the loop condition.

The loop condition: is a Boolean expression often evaluated before the execution of the loop
body as in the case of while and for loops, and after the execution of the loop body as in the
case of repeat. In any case, the body of the loop is running until the condition will be evaluated
as false.

Variation of the loop condition: this is usually done at the end of the loop body as an increment
or decrement of a counter used to evaluate the loop condition as in the case of while, repeat.
Forgetting or incorrectly performing this step causes the loop body to execute infinitely, or give
unexpected results.

2. The For loop

For loops are used when you know how many times you want to repeat a certain block of code.
This is known as definite iteration. A for loop uses a counter to tell it how many times to run
the same sequence of activities.

The counter has the following three numeric values:

e Initial counter value
e Increment (the amount to add to the counter each time the loop runs)
¢ Final counter value

The loop ends when the counter reaches the final counter value.

Syntax Flowchart

For ctr = initial_value To final_value do Begin

Initial value

Statements

Condition

End (L E

counter)

Do something

Increment

28

Example: Display the five first number

Algorithm CountV1;
var | : integer;
Begin
fori €< 10to 20 do
write(i);
End.

Note : When only one instruction is involved, the Begin ..End is not required. The note remains
valid for what follows.

3. The While loop

While loop is used to execute the body of the loop until a specific condition is false. We apply
this loop when we do not know how many times it will run.

The while loop consists of a loop condition, a code block as the loop body and a loop update
expression. First, the loop condition is evaluated, and if true, the code in the body of the loop
will be executed. This process repeats until the loop condition becomes false.

Syntax Flowchart
Initialization of the loop
While (condition of the loop) do Begin

Condition

Loop’s body
Condition update

Eﬂd; Do something

Example:

Algorithm CountV2;
var i: integer;
Begin
i <10; //initialization
While(i<=20) do Begin //the number 20 is included
Write(i);
i < i+1; //weincrement the counteri
End;
End.

29

4. The Repeat loop

Repeat loops are used when it is once again indefinite iteration. This means that while we do
not know how many times to loop something, we can just use a Repeat loop.

The loop repeat-until executes a block of instructions repeatedly, until a given condition
becomes true. The condition will be re-evaluated at the end of each iteration of the loop.
Because the condition is evaluated at the end of each iteration, a repeat/until loop will always
execute at least once.

Syntax Flowchart
Initialization of the loop (starr
Repeat S
Code Block |
Loop’s body
Condition update If Condition

Is True

until(condition) ;

i Conditon
Is False

Example:

Algorithm CountV3;
var i : integer;
Begin
i € 20;//initialization
repeat
write(i);
i €i-1; //variation of the condition
until (i<10) ; //the number 10 is included
End.

5. Trace of loops execution

To visualize the evolution of the variables manipulated inside the loops as well as to check the
condition and the initialization of the value of the loop counter, the loop execution flow table is
necessary. This table is composed of n lines for n iterations executed by the loop, plus the initial
state of the variables before launching the loop. In columns, we find the iteration number, the
variables manipulated inside the loop, and the output if applicable.

Example :

Algorithm Addition;
var i, sum: integer;
Begin
sum € 0;
i € 1;
while (i<=5) do Begin
sum € sum-+i;
write(sum+"");

30

i € i+1;
End;
End.

The following table illustrates the evolution of the involved variables

6.

Iteration i | sum | Output
initialization | 0 | 0 -

1 11 1

2 213 13

3 3.6 136

4 4110 13610

5 5115 1361015

Infinite loops

The problem of infinite loops occurs when there is an error in the loop’s condition, or in the
variation of the condition, below are the possible causes of an infinite loop:

The counter is not varied (incremented or decremented), this is not the case of the loop
for because the variation of the counter is done automatically.

Vary the loop counter so as to never check the stopping condition, in this case, it is
necessary to clearly specify the range of the counter, its limits, and the movement of the
counter (increment or decrement).

Vary the loop counter inside a conditional statement.

Wrong condition.

To avoid the infinite loop problem, you must take the following precautions:

7.

Carefully study the range of variation of the counter.

Specify the loop condition carefully by taking into account the extreme values of the
counter.

Involve the counter in the loop condition and do not forget to vary it.

Nested loops

A nested loop means a loop inside another loop. We can have any number of loops inside
another loop.

Example:

Fori € 0to 10 do Begin
forj € 0 to5 do Begin
statements;
End;
End;

31

8. Loops in C programs
8.1. The For loop
Syntax

for (i=initial value; condition; variation of i)

Loop’s body

Example :
#include <stdio.h>

Iwoid main () {
int i;
for (i=l;i<=5;i++)
printf ("s5d\n",1i):

8.2.The While loop
Syntax:

Initialization of the loop
while(condition of the loop) {
Loop’s body

Condition update

Example:

while1.c

#include <stdio.h>»

Hwoid main () {

int i:

i=1;

= while (i<=5){
Frintf("%ﬁg\n",i);

1++r-

8.3. The Do .. while loop

In C language, we use the 'do-while' loop as an implementation of the repeat loop.

32

{

Result

B ' "C\Nouveau dossiel

1

Result :

B | "C\Nouveau dossier

1

Syntax

Initialization of the loop
Do {
Loop’s body
Condition update

} while(condition loop) ;

Example:

Result:

#include <stdio.h>

Jwoid main () {

int i;
i= 1;
] do {
printf ("s5d\n", i)
i++4;
}

B ' "C\Nouveau dossier

1

33

Chapter 5 : Array Structure

1. Introduction

An array is a data structure that consists of a set of values from the same data type with a single

identifier name. Elements are stored at contiguous memory locations.

Basic terminologies of array

e Array Index: In an array, elements are identified by their indexes. Array index starts

from 0.

e Array element: Elements are items stored in an array and can be accessed by their

indexes.

e Array Length: The length of an array is determined by the number of elements it can

contain.

Array elements

Array identifier 10 5 7 12

5

2. The Arrays
2.1. Creating arrays

Syntax for declaring an array:

Many options are possible to declare an array:

1% option
var array_name : array[0.. number_of values_to_hold-1] of data_type;

2™ option
var array_name : array[number_of values_to_hold] of data_type;

3nd option

type name_of type :array[0..numberOfValuesToHold-1] of data_type;

var array_name : name_of type;

34

5\

Array indexes

Example :
const numDays =7 ;
type numArr : array[0..4] of int ;

var daysOfWeek : array[0..numDays-1] of string ;

vowels : array[6] of char;
scores : numaArr ;

Once declared, arrays have to be initilazed / filled

Example :
daysOfWeek = [“sunday”, “monday”,”tuesday”,”wednesday”,”thuesday”,”friday,”saturday”]
VOWelS = [lal’ Iel, Iil, IO!' lul’ Iyl] ;

scores = [12, 8, 14, 9, 10] ;

2.2. Accessing Array Elements

An element from an array is accessed by indexing the array name. This is done by placing the
index of the element within square brackets after the name of the array. The number inside the
square brackets [] is called a subscript. It’s used to reference a certain element of the array.

2.2.1. Access to an element

Syntax To refer to a specific element in the array:

array_name[subscript number] ;

Example:

myDay = daysOfWeek[1] ;

This instruction assigns the value “monday” to the variable myDay.

2.2.2. Browsing arrays
Navigating through an array can be done in several ways, the most used are: The browsing from
the first to the last element, and the browsing from the last to the first element.

2.2.3. Displaying elements of an array T with N elements
In order to go through all the elements of the array, we use a loop with an increment/decrement

of the index from the first to the last element of the array or vice versa.

fori € 0toN-1do
write(T[i]) ;

35

or (the reverse order)
fori € (N-1) to 0 do
write(T[i]) ;

2.2.4. Reading elements of an array T with N elements

Examplel : Initializing the elements to 0
i € 0;
while i < N-1 do Begin
T[i] € O;
i €<i+l;
End;

Example2 : Reading the elements
i=0
while i < N-1 do Begin
write(‘Enter the “ i, “ th element of the array : 7);
readIn(T[i]);
i€ i+1;
End;

2.3. Array algorithms

2.3.1. Find the maximum and minimum element in an array (and their indexes)

Algorithm Max_min_tab;
const N=10;
var tab : array[0..N-1] of integer ;
i, max, min, indexMin, indexMax : integer;

Begin

min € tab[0] ;

max €< tab[0] ;

indiceMin € 0 ;

indiceMax € 0 ;

for i € 0to (N-1) do Begin

if (min > tab[i]) then Begin
min € tabli] ;
indiceMin € i;

End;

if (max < tab[i]) then Begin
max < tabli] ;
indiceMax € i;
End;
End;

36

writeln("le min =", min, " at the index: ", indexMin) ;
writeln("le max =", max, " at the index : ", indexMax) ;
End.

2.3.2. Find the sum and the product of all elements in an array

Algorithm Sum_product_tab;
const N=10;
var tab : array [0..N-1] of integer;
i, sum, product : integer;
Begin
sum € 0 ;
product € 1;
fori € 0to (N-1) do Begin
sum € sum + tabli] ;
product € product * tabl[i];
End;
writeIn(“The sum is” :, sum) ;
writeln(“The product is” :, product) ;
End.

2.3.3. Searching for elements in an array

There are two main algorithms for searching for elements in an array: linear search and binary
search.

e Linear search is a simple algorithm that iterates over the array, comparing each element
to the target element. If the target element is found, a Boolean variable is set to true,
otherwise it is false. Given the array tab having as length N, and the element to search
X:

found € false ;

i< 0;

while ((found = false) and (i<N)) do Begin
if (tab[i] =x) then found € true;

i €< i+l ;
End;

e Binary search is a more efficient algorithm that can be used on sorted arrays. It works by
repeatedly dividing the array in half and comparing the middle element to the target
element. If the target element is equal to the middle element, the algorithm returns its index.
Otherwise, the algorithm recursively searches the half of the array that contains the target
element.

2.4. Shift array
2.4.1. Left shift with insertion of 0

37

Algorithm Left_shift_zerolnsert_tab;
const N=10;
var tab : array[0.. N-1] of integer ;
i :integer;
Begin
// read the array

fori € 0to (N-1-1) do tab[i] € tab[i+1];

tab[N-1] € O;
End.

2.4.2. Right Circle shift without insertion

Algorithm Right_shift_tab;
const N=10;
var tab:array[0.. N-1] of integer ;
i, tmp :integer;
Begin
// read the array

tmp € tab[N-1]
fori € (N-1) to 1 do tab[i] € tabl[i-1];

tab[0] € tmp;
End.

3. Sorting Arrays

Sorting is one of the basic operations on the arrays. Indeed; it is usually helpful when we have
an array to be able to put it in some sort of order (be it numerical or alphabetical).

There are many algorithms the arrays sorting. Some are simple and some are complex. Some
are fast while others are slow.

3.1. Selection sort

Selection sort is a simple sorting algorithm that works by repeatedly finding the smallest
element in an unsorted array and swapping it with the first element in the array. This process is
repeated until the entire array is sorted.

[llustration : Imagine you have a sequence of number: 8 4 2 5 3 7
Look through the list and find the smallest. Exchange the smallest with the first item in the list.
2 148537

Now look through everything to the right of the | for the smallest. Exchange the smallest with
the first item in the list to the right of the “|”

38

23| 8547
Repeating the steps results :
234|587
234587
2345718
234578 |

The associated algorithm would be :

fori € 0to (N—1-1) do Begin
smallest =i ;
forj €< (i+1)toN-1do
if array[j] < array[smallest] then { smallest =] ;

temp € array[i] ;

array[i] € array[j] ;

array[j] € temp ;
End;

3.2. Bubble Sort

Bubble sort is a simple sorting algorithm that works by repeatedly comparing adjacent elements
in an array and swapping them if they are in the wrong order. Thus, the smallest element
"bubbles" to the top of the array. This process is repeated until the entire array is sorted.

fori € 0ton-1-1do

forj € 0ton-i-1 do
if (tab[j]>tab[j+1]) then Begin
tmp €tab[j] ;
tab[j] € tab[j+1];
tab[j+1] €tmp ;
End;

[lustration

Array tosort: 842537
Pass 1

Compare 8 and 4: Swap
Array: 482537
Compare 8 and 2: Swap
Array: 428537
Compare 8 and 5: Swap

39

Array: 425837
Compare 8 and 3: Swap
Array: 425387
Compare 8 and 7: swap
Array: 425378

Pass 2

Compare 4 and 2: Swap

Array: 245378

Compare 4 and 5: No swap required
Array: 245378

Compare 4 and 3: Swap

Array: 234578

Compare 4 and 7: No swap required
Array: 234578

Compare 4 and 8: No swap required
Array: 234578

Pass 3

Compare 2 and 3: No swap required
Array: 234578

Compare 2 and 4: No swap required
Array: 234578

Compare 2 and 5: No swap required
Array: 234578

Compare 2 and 7: No swap required
Array: 234578

Compare 2 and 8: No swap required
Array: 234578

3.3. Insertion Sort

Insertion sort is a simple sorting algorithm that works by inserting each element in an unsorted
array into its correct position in a sorted array. In other words, as an element is added to the list,
it is inserted into the correct position.

40

fori € 1to N-1 do Begin
temp € arrayli] ;
j€i-1;
while j >= 0 and array[j] > temp do Begin
array[j + 1] € array[j] ;

IR Y
End
array[j + 1] € temp ;

End;

4. 2-Dimensional arrays (matrices)

The elements of an array may be of any type. They could even be arrays. This type of array is
known as a multi-dimensional array.

One-dimension arrays are called vectors. When an array has 2 or more dimensions, it is called
a matrix.

I column 2™ column M"column

1% row

2 row

N* row

Syntax of declaration:

array_name : array[0 ..numberOfRows-1, 0 ..numberOfColumns-1] of data_type ;

4.1. Accessing elements of a matrix

To refer to a specific element in the array, must specify two subscripts.
Syntax:

array_name [i, j]

Example : Initilization of elements to 0

Algorithm Init_mat ;

const n=4, m=5;

var mat:array [0..n-1,0.. m-1] of integer ;
i,] :integer;

41

Begin
for i € 0to(n-1)do
forj €< 0to(m-1)do mat[i,j] € 0;

End.

4.2. Operations on matrixes

4.2.1. Sum of elements of a matrix

Algorithm Sum_mat ;
const n=4, m=5;
var mat :array[0..n-1, 0..m-1] of integer ;
i, j, sum :integer ;
Begin
fori € 0to(n-1) do Begin
sum €< 0 ;
forj €< 0to (m-1)do
sum € sum + mat(i, j] ;

End;
writeln(sum);
End.

4.2.2. Sum of two matrices

To sum two matrices, matrices should have the same dimensions.

Algorithm Sum_2 mat ;
const n=4, m=5;
type matrice : array [0 ..n-1][0 ..m-1] of integer ;
var matl, mat2, mat3 : matrice ;

i, j:integer;
Begin

fori € 0to(n-1) do
forj €< 0to (m-1) do
mat3[i, j] € matl[i, j] + mat2[i, j] ;

End.

4.2.3. Product of two matrices

To perform the product of two matrices, if the first matrix is (N,M) dimension, the second
should be (M, P).

Algorithm Product_mat;
const n=4,m=5,p=6;
var matl : array[0.. n-1, 0 ..m-1] of integer ;

42

mat2 : array[0 ..m-1, 0 ..p-1] of integer ;
mat3 : array[0.. n-1, 0 ..p-1] of integer ;
i, j, k, sum :integer; //the variable sum is used to compute the product between vectors

Begin
for k € 0to (n-1) do Begin
fori € 0to(p-1) do Begin
sum € 0;
forj €< 0to (m-1) do
sum € sum+(matl[k, jl*mat2[j, i]) ;

mat3[k, i] € sum ;
End;
End;
End.

4.3. Arrays in C programs

In C programs, subscripts start from 0 and run to N-1 (where N is the value within the square
brackets). The syntax to create an array is as follows :

data_type array_namelarray_size];

Example :

#include <stdio.h>

Hint main()
int n = 5;
int tab[n];
int i;

= for (i = 0 ; i<n; i44){
printf ("Enter the %d th element of the array: ", i):
scanf ("%d", &tabli]):

4.3.1. Searching for an element in an array

43

#include <stdio.h>
#include <stdbool.h>

int main{()

int arr[] = {1, 3, 5, 7, 9}:
int target = &;
int i;

bool found = false;

for (i = 0; i < sizeof(arr)/ sizeocf(arr[0]):; i++) {

if (arr[i] == target)
found = true:
break:

}
}

if (found)
printf ("The element %d is found at index %d\n", target, 1i):
} else

printf ("The element %d is not found in the array\n", target):

}

return 0;

4.3.2. Sorting

The following program performs the sorting according to the selection sort algorithm. This
program works by iterating over the array and finding the smallest element in the unsorted part
of the array. It then swaps the smallest element with the current element. The program repeats
this process until the entire array is sorted.

44

#Finclude <stdio.h>
int main() {
int arr|[]
int n = 5;
int i, j, temp, sSmallest

= {5, 2, 8, 7, 1}:

for (i = 0; i < m — 1; i++) {

smallest=1ir-r

for (4 = 4 + 1; 4 < n: J++) |
if (arr[j] < arr[smallest]) {
smallest = j»
H

}

temp = arr[i]:

arr[i] = arr[smallest]:

arr[smallest] = temp:s

H
printf ("The sorted array dis:wn") ;
for (i = 0; i < mny i++) {
printf("sd ", arxr[il) :
|3
printf ("\n") :

return 07

4.3.3. Operations on Matrices

The sum of the elements of the diagonal

#include <stdio.h>

int main() {
int matrix[B][B] = {‘{lr 2r 3}1' {4r 5; E}r {Tr 8; 9}’}:
int i, sum = 0;
for (i = 0; i < 3; i+4) {

sum += matrix[i] [i]:

}

printf ("The sum of the diagonal elements is %d\n", sum):

return 0;

45

Chapter 5 : Enumerations and Structures

1. Enumerations

1.1. Enumerations

The set type is created by defining the domain of values it contains, i.e., the list of constant
values that variables of this type can take. Variables of this type take a value among a set.

Syntax for declaration

type enum_type = set(valuel, value2, ...);

Example :
type color=set (blue, green, red);
var cl : color;

cl < green;

Enumerations are particularly useful for enhancing code readability making the code more
understandable and maintainable. The sets can be used to iterate in loops like

type Color= set (blue, green, red, white) ;
var cl:color;

for c1<— blue to white do write (c1) ;

1.2. Enumerations in C
In C language, an enumeration is declared using the 'enum' keyword.
Syntax: enum enum_type {valuel, value2, ...} ;
Example:
enum color {white, blue, yellow, green, black} ;

We declare a variable of type 'color' by specifying the name of the enum followed by the name
of the variable to be declared,

Example:
enum colorcl ;.
Additionally, we can assign numerical constants to each color as follows:

enum color {white=10, blue=11, yellow=12, green=13, black=14};

46

If numerical constants are not specified, these values start from 0 and increment by 1 for each
subsequent enumerator.

2. Structures

Unlike arrays, which are data structures where all elements are of the same type,
records/structures are data structures where the elements can be of different types and relate to
the same semantic entity.

e The elements that compose a record are called fields or attributes.

e Arecord is a user-defined data type that allows grouping a finite number of elements of
different types.

e A record is a complex variable that allows designating, under a single name, a set of
values that can be of different types (simple or complex).

e Before declaring a record variable, it's necessary to have previously defined the name
and type of the fields that compose it.

e It's possible to create custom types and then declare variables or arrays of elements of
that type

2.1. Declaration of Records/Structures

The declaration of structure types occurs within the specific section of algorithms called “type”
which precedes the section for variables and follows the section for constants.

type recordName = structure
id1 : typel;

id2 : type2;

idN : typeN;

end;

Where <idl>, <id2>, ..., <idN> are the identifiers of the fields, and <typel>, <type2>, ...,
<typeN> are their types respectively.

Example :
type car = structure
brand: string ;

c: color; // color is an enumeration type, as shown previously

47

price: float ;
end;

var vl :car;

2.2. Accessing the fields of a structure

To access a field of a structure, the variable ID of the structure type is used, followed by a dot
and then the name of the field you want to access.

Syntax: <structVariable>.<fieldName>

For example, to access the 'price' field of the variable 'v1' of type 'car', we use : v1.price
Assignment: v1.price < 2000.00 ;
Or: floatVariable & vl.price ;

Reading: read(v1.price) ;

2.3. Array of structures

In order to manage multiple entities of a given type (e.g., cars), we use a one-dimensional array
structure to store these elements. In a rent car agency, the information of the available cars is
stored in an array of structure from the type car.

Similarly, in a school context, information about the student is stored in an array of records
from the type “student” that can be defined as follows.

type student = structure
firstName : string;

lastName : string;

End;

var studentList = array [0..99] of student ;

studentList is an array with 100 records that describe students.

2.4. Operations on structures

In the following is an example for reading data to fill the array of car structure.

48

Algorithm Fill_array_car;
const n=10;
type car = structure
brand: string ;
c: string ;
price: float ;
end;

var listCar = array[0..n-1] of car ;
i:integer;

Begin
fori <« 0to (n-1) do Begin
read(List_carl[i]. brand) ;
read (List_carl[i].c) ;
read (List_car(i]. price) ;
End;
End.

In the following are instructions to display the content of the aforementioned array.

fori<« 0to (n-1) do Begin
write(listCarl[i]. brand) ;
write (listCar[i].c) ;
write(listCar[i]. price) ;
End;

In the following, instructions to sort elements of /istCar array according to the price (bubble
sort)

var tmp : car;
i, :integer;

fori<(n-2)to0do
forj«-0toido
if (listCarl[j].price > listCar[j+1].price) then Begin
tmp <« listCarl[j] ;
listCar[j] « listCar[j+1] ;
listCar[j+1] <~ tmp ;
End;

2.5. Structures in C

The structure type in C language is declared as follows :

49

struct structureName {
typel idil;
type2 id2;

After defining the struct, you can declare variables of that struct type according to two ways:
e Variable declaration after structure declaration

// structure declared beforehand

struct structureName varl, var2, ;

e Combining definition and declaration

struct structureName {
typelidl;
type2 id2;

} varl, var2, ;
Members of a structure are accessed with a dot after the structure identifier.

Example:

In the following is a C program that creates a list of three cars, and display them according to
their year.

50

W o0] Gy ol W

!

#include<stdio.h>
void main () {
enum color {red, blue,green};
struct Car {
int id;
char model[20];
char brand[20];
enum color c:
int year:;

} o

char 1istOfColor[3][20]={"Red", "Blua", "Green"} :
int n=3;

struct Car listCar[n]:;

for (int i=0;i<n; i++){
listCar[i].id=i+1;
printf ("enter the model: "); scanf("%s",&listCar]|
printf ("enter the brand: ")|; scanf("%s",&listCar]|
printf ("enter the c: "): scanf ("%d", &listCar/|
printf ("enter the year: "): scanf ("%d", &listCar|

}

struct Car temp;
for (int i=0; i<n-1;i++){
for (int j=0; j<n-1i-1;j++){
if(listCar[j].year>listCar[j+1].year){
temp=listCar[j]:
listCar[jl=listCar[j+1]:
listCar[j+1l]=temp:

}

for (int i=0; i<n;i++) {

o

i
i
i
i

1.
1.
1.
1.

model) ;
brand) ;
c):
year) :

printf("car id %d is %s %s with a %s color, year =%d\n",

listCar[i].id, listCar([i
listOfCeoleor[listCar[i].c

.model, listCar[i].brand,
,listCar[i] .year):

]
]

51

