2025/2026

Module: General Electricity

SERIES 1

(Mathematical tools)

Exercise 1:

In an oriented space Oxyz, two vectors are given by:

$$\overrightarrow{v_1} = \overrightarrow{AB}$$
 with A (1, 3, 8) and B (6, 7, 8)

$$\overrightarrow{v_2} = -8 \overrightarrow{i} + \alpha \overrightarrow{j} + 7 \overrightarrow{k}$$

• Find the value of α so that both vectors are perpendicular.

Exercise 2:

Let the vectors: $\vec{A} = 2\vec{i} + 3\vec{j} + 5\vec{k}$ and $\vec{B} = \vec{i} - 2\vec{j} + 3\vec{k}$

- **a-** Calculate the vector product $\vec{C} = \vec{A} \wedge \vec{B}$
- **b-** Find the unit vector perpendicular to the plane (\vec{A}, \vec{B}) .
- *c* Deduce the angle between these two vectors.

Exercise 3:

In an orthonormal coordinate system $(O, \vec{l}, \vec{l}, \vec{k})$, consider the parallelepiped P defined by the three vectors:

$$\vec{A} = 5 \vec{\imath} - \vec{j} + 2 \vec{k}$$
, $\vec{B} = 3 \vec{j} - \vec{k}$ and $\vec{C} = 4 \vec{\imath} + \vec{k}$

$$\vec{B} = 3 \vec{j} - \vec{k}$$

$$\vec{C} = 4\vec{i} + \bar{k}$$

- **a-** Calculate the volume of the parallelepiped *P*.
- **b-** Are the three vectors coplanar? Justify your answer.

Exercise 4:

Let the vector $\vec{A} = 2 x y z \vec{i} + (2 x^2 - y) \vec{j} + y z^2 \vec{k}$ and the function $f(x, y, z) = x^2 y + 2 y^2 z^3$

Calculate: $\overrightarrow{g_{rad}} f(x, y, z)$ and div \overrightarrow{A} at the point (1, 0, 0).