chapitre 4 class diagram

Soumia LAYACHI
26 octobre 2025

1 Introduction

Introduction The class diagram is considered the most important diagram
in object-oriented modeling ; it is the only mandatory diagram in such mode-
ling. While the use case diagram shows a system from the perspective of the
actors, the class diagram shows its internal structure. It provides an abstract
representation of the system’s objects that will interact to realize the use cases.
It is a static view, as the temporal factor in the system’s behavior is not taken
into account.

2 Objects

An object is an abstraction of a real-world element. It has information, such
as name, surname, address, etc., and behaves according to a set of operations
that apply to it. In addition, a set of attributes characterize the state of an
object, and we have a set of operations (methods) that allow us to act on the
behavior of our object. An object is an instance of a class, and a class is an
abstract data type, characterized by properties (its attributes and methods)
common to objects, which allows the creation of objects possessing these pro-
perties. Object=identity+state(attributes)+behavior (methods)

— Identity : The object has an identity, which allows it to be distingui-
shed from other objects, regardless of its state. This identity is generally
constructed using an identifier that naturally arises from the problem
(for example, a product can be identified by a code, a car by a serial
number, etc.)

— Attributes : These are the data characterizing the object. They are va-
riables storing information about the object’s state.

— Methods (sometimes called member functions) : An object’s methods
characterize its behavior, that is, the set of actions (called operations)
that the object is capable of performing. These operations allow the ob-
ject to react to external requests.

Note : Thinking about the object requires a change of mindset !

3 Classes

3.1 Notions of class and class instance

A class is the structure of an object, that is, the declaration of the set of
entities that will make up an object. A class is an abstract data type charac-
terized by properties (attributes and operations) common to its objects and a
mechanism for creating objects having these properties.

Class = instantiation + attributes (instance variables) + operations

— Instantiation : An object has an identity that distinguishes it from other
objects, regardless of its state. Instantiation represents the relationship
between an object and its class of membership that allowed it to be
created.

— Attributes (also called instance variables) : They have a name and either
a base type (simple or constructed) or a class (the attribute references
an object of the same or another class).

— Operations (sometimes called methods) : These are the operations appli-
cable to an object of the class. They can modify all or part of the state
of an object and return values calculated from this state.

— Every object-oriented system is organized around classes.

— A class is the formal description of a set of objects having common se-
mantics and characteristics.

3.2 Graphical representation

Class_Name

-attribute_1: typel

-attribute 2: type2

+operation_1(): typel
+operation_2(): void

FI1GURE 1 — UML representation of a class.

A class is a workbook. It is represented by a rectangle divided into three
to five compartments. The first indicates the name of the class, the second
its attributes, and the third its operations. A responsibility compartment can
be added to list the set of tasks to be performed by the class. An exceptions

compartment can also be added to list the exceptional situations to be handled
by the class.

3.3 Encapsulation, visibility, interface

Classx

-~attribute 1: int
-attribute 2: string

+set_attribute_1(int): void
I+gc‘t_attribute_1(): int
|+set_attribute_z(string): void
!+gc:t_attributc_2(): string

FIGURE 2 — Good practices regarding attribute manipulation.

Encapsulation allows you to define visibility levels for elements within a
container. Public or + : Any element that can see the container can also see the
specified element. Protected or # : Only an element within the container or one
of its descendants can see the specified element. Private or - : only an element
located in the container can see the element. Package or ~ or nothing : only
an element declared in the same package can see the element. In a class, the
visibility marker is located at the level of each of its characteristics (attributes,
association ends and operation). It allows to indicate if another class can access
it.

3.4 Name of a class

The name of the class must evoke the concept described by the class. It
begins with a capital letter. To indicate that a class is abstract, the keyword
abstract must be added.

3.5 Attributes
3.5.1 Class attributes

Attributes define information that a class or object needs to know. They
represent the data encapsulated in the objects of that class. Each of these pieces
of information is defined by a name, a data type, and a visibility and can be
initialized. The attribute name must be unique within the class.

3.5.2 Class attributes(Static Variables)

A class attribute is therefore not a property of an instance, but a property
of the class and access to this attribute does not require the existence of an
instance. Graphically, a class attribute is underlined.

3.5.3 Derived attributes

Derived attributes can be calculated from other attributes and calculation
formulas. During design, a derived attribute can be used as a marker until you
can determine the rules to apply to it. Derived attributes are symbolized by
adding a "/" in front of their name.

3.6 Methods
3.6.1 Class Method

In a class, an operation (same name and same types of parameters) must
be unique. When the name of an operation appears several times with different
parameters, we say that the operation is overloaded.

3.6.2 Class method (static method)

As with class attributes, it is possible to declare class methods. A class me-
thod can only manipulate class attributes and its own parameters. This method
does not have access to class attributes (i.e., instances of the class). Accessing
a class method does not require the existence of an instance of that class. Gra-
phically, a class method is highlighted.

3.6.3 Abstract methods and classes

A method is said to be abstract when we know its header, but not how it
can be implemented. A class is said to be abstract when it defines at least one
abstract method or when a parent class contains an abstract method that has
not yet been implemented. A pure abstract class has only abstract methods.
In object-oriented programming, such a class is called an interface. To indicate
that a class is abstract, you must add the keyword abstract after its name.

3.7 Relationships between classes

Class diagrams express the static structure of the system. They describe
the set of classes and their associations. A class describes a set of objects (ins-
tances of the class). An association expresses a bidirectional semantic connection
between classes . An association describes a set of links (instances of the associa-
tion). The role describes one end of an association. Cardinalities (or multiplicity)
indicate the number of instances of one class for each instance of the other class.

3.7.1 Association

An association indicates that there can be links between instances of the
associated classes. How should an association be modeled ? More precisely, what
is the difference between the two diagrams in the following figure ?

Parson

Name: String Enpioyen wiork for P
sthamesung [!

Salary(): Float

Compal 9
Employee: Person [

Turnover(): Float

FIGURE 3 — Two ways to model an association.

In the first version, the association appears clearly and constitutes a distinct
entity. In the second, the association is manifested by the presence of two attri-
butes in each of the related classes. The question of whether to model associa-
tions as such has long been debated. UML decided on the first version, because
it is more at a conceptual level (as opposed to the implementation level) and
greatly simplifies the modeling of complex associations (such as many-to-many
associations, for example).

3.7.2 Association Termination and its Properties

The possession of an association end by the classifier at the other end of
the association can be specified graphically by adding a small solid circle (dot)
between the association end and the class. It is not essential to specify the
possession of association ends. In this case, the possession is ambiguous. On the
other hand, if possession of association ends is indicated, all association ends are
unambiguous : the presence of a dot implies that the association end belongs to
the class at the other end, the absence of the dot implies that the association
end belongs to the association.

Polygon F polygon- Defined by e =I|Paint

FIGURE 4 — Using a small filled circle to specify the owner of an association
termination.

The diagram specifies that the vertex association end belongs to the Polygon
class while the polygon association end belongs to the Defined By association.
A property is a structural characteristic. In the case of a class, properties are
made up of the attributes and any association endings that the class possesses.
In the case of an association, properties are made up of the association endings
that the association possesses.

A property can be set by the following elements : name, visibility, multipli-
city, navigability.

3.7.3 Binary and n- ary association

Binary association A binary association is materialized by a solid line bet-
ween the associated classes.

samploy wiorking for +employer Luze

FI1GURE 5 — Example of binary association.

n-ary association An n-ary association links more than two classes. An
n-ary association is represented by a large diamond with a path leading to
each participating class. The name of the association, if any, appears near the
diamond. Note : The multiplicity associated with an association, aggregation, or
composition term declares the number of objects that may occupy the position
defined by the association term. Examples of multiplicity include :

— exactly one : 1 or 1..1;

— several :*or 0..%;

— at least one : 1..%;

— from one to six : 1..6.

Student

FI1GURE 6 — Example of association.

An n-ary association links more than two classes. An n-ary association is repre-
sented by a large diamond with a path leading to each participating class. The
name of the association, if any, appears near the diamond. Note : The multipli-
city associated with an association, aggregation, or composition term declares
the number of objects that may occupy the position defined by the association
term. Examples of multiplicity include : e exactly one : 1 or 1..1; e several :*or
0..*; e at least one : 1..*; e from one to six : 1..6.

3.7.4 Class-association

Employed

+hire_date: date
+salary: float

T
I
1
I
1

FIGURE 7 — Example of class - association.

Sometimes, an association must have properties. For example, the Employs
association between a company and a person has the salary and hiring date as

properties. Indeed, these two properties belong neither to the company, which
can employ several people, nor to the people, who can have several jobs. They
are therefore properties of the Employs association. Since associations cannot
have properties, a new concept must be introduced to model this situation : that
of association class. An association class is characterized by a discontinuous line
between the class and the association it represents.

3.7.5 Aggregation and composition

| e] ek] e |

F1GURE 8 — Example of aggregation and composition relationship.

Aggregation When we want to model a whole/part relationship where a class
constitutes a larger element (whole) composed of smaller elements (part), we
must use an aggregation. An aggregation is an association that represents a
structural or behavioral inclusion relationship of an element in a set. Graphi-
cally, an empty diamond is added to the side of the aggregate. Unlike a simple
association, an aggregation is transitive.

Composition Composition, also called composite aggregation, describes a
structural containment between instances. Thus, the destruction of the com-
posite object implies the destruction of its components. An instance of the part
always belongs to at most one instance of the composite element : the multipli-
city of the composite side must not be greater than 1 (i.e. 1 or 0..1). Graphically,
we add a solid diamond (#) on the aggregate side.

The concepts of aggregation and especially of composition pose numerous
problems in modeling and are often the subject of quarrels among experts and
sources of confusion.

3.7.6 Generalization and Inheritance

A A

I Mammal I Oviparous

9 A 9 % Ko Q
Platypus

FIGURE 9 — Part of the animal kingdom described with multiple inheritance.

Generalization describes a relationship between a general class (base class
or parent class) and a specialized class (subclass). The specialized class is fully

consistent with the base class, but includes additional information (attributes,
operations, associations). The symbol used for the inheritance or generalization
relationship is an arrow with a solid line whose tip is a closed triangle designating
the most general case. The main properties of the inheritance are : e the child
class has all the characteristics of its parent classes, but it cannot access the
private characteristics of the latter ; e a child class can redefine (same signature)
one or more methods of the parent class. Unless otherwise indicated, an object
uses the most specialized operations in the class hierarchy ; e all associations of
the parent class apply to derived classes; @ A class can have several parents,
which is called multiple inheritance. The C+-+ language is one of the object
languages that allows its effective implementation, while the Java language does
not.

3.7.7 Dependence

Confrontation

N Strate:
confrontation_number: Integer <<use>> 9

score_stl: Integer | e====== 3| name: string
score_st2: Integer

decision(): Boolean

confront(stl: Strategy, st2: Strategy)

FIGURE 10 — Example of a dependency relationship.

A dependency is a unidirectional relationship expressing a semantic depen-
dency between elements of the model. It is represented by a directed dashed
line. It indicates that modifying the target may imply a modification of the
source. The dependency is often stereotyped to better explain the semantic link
between the elements of the model. A dependency is often used when one class
uses another as an argument in the signature of an operation.

3.7.8 Interfaces

Persor

- Administrative Agent |— "
1 1

I<<realizes> je<uses>
1

1
<anterfacas» !

1
- ‘DLibrary Registration <

oid

FI1GURE 11 — Example of a diagram implementing an interface.

An interface is represented as a class except for the absence of the keyword
abstract (because the interface and all its methods are, by definition, abstract)

and the addition of the stereotype «interface> >. An interface must be imple-
mented by at least one class and can be implemented by several. Graphically,
this is represented by a broken line ending in a triangular arrow and the ste-
reotype "realize". A class can very well realize several interfaces. A class (client
class of the interface) can depend on an interface (required interface). This is
represented by a dependency relationship and the "use" stereotype.

3.8 Object diagram

An object diagram represents objects and their relationships to provide a
fixed view of the state of a system at a given time. The class diagram models
rules and the object diagram models facts.

FIGURE 12 — Example of a class diagram and associated object diagram. Gra-
phically, an object

is represented as a class. However, the operations compartment is not useful.
In addition, the name of the class of which the object is an instance is preceded
by a « : » and is underlined. To differentiate objects of the same class, their
identifier can be added before the class name. Finally, the attributes receive
values. When some attribute values of an object are not filled in, we say that
the object is partially defined. In an object diagram, the relationships in the
class diagram become links. The generalization relationship has no instance, so
it is never represented in an object diagram. Graphically, a link is represented as
a relationship, but if there is a name, it is underlined. Naturally, multiplicities
are not represented.

Example

* give class *
Teacher L. 2 L. udent

I
l<<instanceof=>> l<<instanceof>> I<<instanceof=>

1 1 [
1
Teacher 1 Student
| give class |

FIGURE 13 — Instantiation dependency between workbooks and their instances.

The instantiation dependency relationship (stereotyped «instance of») des-
cribes the relationship between a workbook and its instances. In particular, it
connects links to associations and objects to classes.

Références

[1] G. Booch, J. Rumbaugh, 1. Jacobson, The Unified Modeling Language
(UML) User Guide, Addison-Wesley, 1999.

[2] Benoit Charroux, Aomar Osmani, Yann Therry-Mieg, UML 2 — Synthése
et exercices, Pearson Edition francaise, ISBN 2-7440-7124-2, 2005.

[3] G. Booch et al., Object-Oriented Analysis and Design with Applications,
Addison-Wesley, 2007.

[4] Laurent Audibert, = Cours UML 2.0, disponible sur
http://www.developpez.com

10

