MAGHINE LEARNING
i MASTERY

Machine
Learning
Algorithms

FROM SCRATCH

Discover How They Work
and Implement Them
From Scratch

Jason Brownlee

Disclaimer

The information contained within this eBook is strictly for educational purposes. If you wish to apply
ideas contained in this eBook, you are taking full responsibility for your actions.

The author has made every effort to ensure the accuracy of the information within this book was
correct at time of publication. The author does not assume and hereby disclaims any liability to any
party for any loss, damage, or disruption caused by errors or omissions, whether such errors or
omissions result from accident, negligence, or any other cause.

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic or
mechanical, recording or by any information storage and retrieval system, without written permission
from the author.

Copyright
Machine Learning Algorithms From Scratch
©) Copyright 2016 Jason Brownlee. All Rights Reserved.

Edition: v1.91

This is Just a Sample

Thank-you for your interest in Machine Learning Algorithms From Scratch.
This is just a sample of the full text. You can purchase the complete book online from:
https://machinelearningmastery.com/machine-learning-algorithms-from-scratch/

MAGHINE LEARNING
i MASTERY

Machine
Learning
Algorithms

FROM SCRATCH

Discover How They Work
and Implement Them

From Scratch

Jason Brownlee

i

https://machinelearningmastery.com/machine-learning-algorithms-from-scratch/

Contents

Copyright i
Welcome iv
1 Simple Linear Regression 1
1.1 Description 1
1.2 Tutorial 2
1.3 Extensions 11
1.4 Review e 12

il

Welcome

Welcome to Machine Learning Algorithms From Scratch. This is your guide to learning the
details of machine learning algorithms by implementing them from scratch in Python. You
will discover how to load data, evaluate models and implement a suite of top machine learning
algorithms using step-by-step tutorials and sample code.

Machine learning algorithms do have a lot of math and theory under the covers, but you
do not need to know why algorithms work to be able to implement them and apply them to
achieve real and valuable results. From an applied perspective, machine learning is a shallow
field and a motivated developer can quickly pick it up and start making very real and impactful
contributions. This is my goal for you and this book is your ticket to that outcome.

Implement Machine Learning Algorithms

Most developers that I know (myself included) learn best by implementing. It is our preferred
learning style and it is the reason that I created this book. This section lists the benefits of
implementing machine learning algorithms from scratch, some benefits from extending your own
implementations as well as some limitations to this approach to learning.

Implementation Benefits

Machine learning is all about algorithms and there are so many algorithms that it can feel
overwhelming. Really, there are probably only 10 algorithms that if understood will unlock the
field for you. An approach that you can use to get a handle on machine learning algorithms is
to implement them from scratch. This will give you a deep understanding of how the algorithm
works and all of the micro-decision points within the method that can be parameterized or
modified to tune it to a specific problem. The benefits of implementing algorithms from scratch
are:

e Understanding: You will gain a deep appreciation for how the algorithm works. You will
begin to understand how the mathematical description of the method relates to vectors
and matrices of numbers that your code operates on. You will also know how all of the
parameters are used, their effects and even have insights into how it could be further
parameterized to specialize it for a problem.

e Starting Point: Your implementation will provide the basis for more advanced extensions
and even an operational system that uses the algorithm. Your deep knowledge of the
algorithm and your implementation can give you advantages of knowing the space and
time complexity of your own code over using an opaque off-the-shelf library.

v

e Ownership: The implementation is your own giving you confidence with the method
and ownership over how it is realized as a system. It is no longer just a machine learning
algorithm, but a method that is now in your toolbox.

Implementation Extensions

Once you have implemented an algorithm you can explore making improvements to the imple-
mentation. Some examples of improvements you could explore include:

e Experimentation: You can expose many of the micro-decisions you made in the algo-
rithms implementation as parameters and perform studies on variations of those parameters.
This can lead to new insights and disambiguation of code that you can share and promote.

e Optimization: You can explore opportunities to make the implementation more efficient
by using tools, libraries, different languages, different data structures, patterns and internal
algorithms. Knowledge you have of algorithms and data structures for classical computer
science can be very beneficial in this type of work.

e Specialization: You may explore ways of making the algorithm more specific to a problem.
This can be required when creating production systems and is a valuable skill. Making an
algorithm more problem specific can also lead to increases in efficiency (such as running
time) and efficacy (such as accuracy or other performance measures).

e Generalization: Opportunities can be created by making a specific algorithm more
general. Programmers (like mathematicians) are uniquely skilled in abstraction and you
may be able to see how the algorithm could be applied to more general cases of a class of
problem or other problems entirely.

Implementation Limitations

Developers and engineers often learn best by implementing, but implementing machine learning
algorithms is not the place to start for everyone.

e Slow for Beginners. Often, practitioners will make more progress and progress faster
by learning how to apply machine learning algorithms to predictive modeling problems.
Implementing algorithms is a second step for learning how to get more out of each algorithm
by discovering how they work and how the parameters affect their behavior.

e Speed and Correctness. Algorithms that you use to solve business problems need to
be fast and correct. And this can be very hard to do for beginners. The implementations
developed for learning purposes are almost certainly going to be too slow or too fragile
for use in operations (that includes all examples in this book). Use implementations for
learning and efficient code libraries for production systems.

Book Organization

This book is divided into 6 main parts:

vi

1. Introduction. Welcomes you to the book and clearly lays out what to expect and your
learning outcomes (you are here).

2. Data Preparation. Tutorials for loading and preparing data, evaluating model predic-
tions, estimating model skill and developing a baseline for model performance.

3. Linear Algorithms. Tutorials on linear machine learning algorithms such as linear
regression, multivariate linear regression, logistic regression and the Perceptron algorithm.

4. Nonlinear Algorithms. Tutorials on nonlinear machine learning algorithms such as
Naive Bayes, k-Nearest Neighbors, Learning Vector Quantization, Backpropagation and
Decision Trees.

5. Ensemble Algorithms. Tutorials on ensemble machine learning algorithms such as
Bootstrap Aggregation, Random Forest and Stacked Generalization.

6. Conclusions. A review of how far you have come and resources for getting help and
further reading.

There are a few ways you can read this book. You can dip into the tutorials as your need
or interests motivate you. Alternatively, you can work through the book end-to-end and take
advantage of how the tutorials build in complexity and range. I recommend the latter approach.
To get the very most from this book, I recommend taking each tutorial and building upon them.
Attempt to improve the results, apply the method to a similar but different problem, and so on.
I share a number of extension ideas for you to consider in each tutorial.

Write up what you tried or learned and share it on your blog, social media or send me
an email at jason@MachineLearningMastery.com. This book is what you make of it and by
putting in a little extra, you can quickly become a true force in machine learning algorithms.

Tutorial Structure

A tutorial-based approach is used throughout the book. It is conversational rather than formal
and focuses on the ideas, the code needed to implement those ideas, and the results to expect.
All tutorials in this book follow a carefully designed 6-part structure. This structure can be
summarized as follows:

1. Overview
2. Description
3. Tutorial
4. Case Study
5. Extensions

6. Review

vii

Overview

This is a short section that summarizes the tutorial. You will discover exactly what you will
know after completing the tutorial.

Description

This section describes both the technique and problem that you will be applying it to. It will
not describe the theory behind why the technique works. Instead, it focuses on the salient
details regarding how the technique works. This includes points relevant to implementing it
from scratch.

Also included in this section is a summary of the problem that the technique will be evaluated
on, if relevant. Not all tutorials will have a problem description: only those tutorials on a given
machine learning algorithm. Only standard well-known machine learning problems are used as
they are freely accessible and known best results are available for comparison.

Tutorial

The tutorial is the steps to complete to go from just an idea to a fully working implementation.
Each tutorial was designed with three principles in mind:

1. Procedural: Tutorials are procedural, meaning that they are presented as a recipe of
discrete steps intended to be completed in order.

2. Standalone: Tutorials are standalone, meaning that all code needed to run the example
is available within the tutorial, even if this involves repetition.

3. Consistent: Tutorials are consistent, meaning that the same routines developed earlier
in the book are used again and again to load data and evaluate algorithms.

A summary of the steps in the tutorial is provided followed by the numbered steps of each
part of the procedure. Code was designed to be modular and broken down into many small
functions that can be understood and tested as standalone units. A procedural rather than
object-oriented approach was used in all code examples. Clever Python tricks and advanced use
of lambdas and list comprehensions were kept to a minimum in favor of for-loops. This was
done intentionally for 3 reasons:

e To be kind to Python novices.
e To be understandable as almost pseudocode, a large benefit of Python.

e To be readily adaptable for use in other other languages and environments.

If you have advanced Python skills and you can see more efficient ways to structure the code,
please share your ideas with me and we can put them on the ML Mastery blog. I would love to
see what you come up with.

Disclaimer: All the code in this book is for education and demonstration only. Code is not
intended for use in production systems or operational environments.

viil

Case Study

Each algorithm tutorial ends with a complete code listing of a fully working case study on
a real-world predictive modeling problem. This is to show you how to use the technique in
practice, often leveraging techniques introduced earlier in the book such as data loading, data
preparation and algorithm evaluation. This is to ensure that even if small copy-paste errors were
made during the execution of the tutorial or steps were skipped, that you always have a reference
version of the tutorial to run and use as a template for your own work. A sample output is also
provided from executing the example, again so that you have reference for comparison.

Extensions

This section lists ideas to extend the example in the tutorial. This may include additional
implementation concerns to make the technique more robust or generally applicable. It may also
include usage heuristics for the technique to ensure you can get more out of its application to new
problems. Please try some of the extension ideas. Even email me and share your experiences;
we can put them to the ML Mastery blog.

Review

Tutorials end with a summary of the principles and skills that you learned. This helps to
reinforce and remind you of your progress through the book and keep you highly motivated.

Requirements For This Book

Python

You do not need to be a Python expert, but it would be helpful if you have or know how to
install and setup a Python environment. You are expected to know some basic Python syntax.
If you are a programmer from another language like Java or C#, there is a Python crash course
in the appendix to bring you up to speed quickly.

The tutorials assume that you have Python 3 (e.g. Python 3.6) installed and working. All
examples have also been tested with a Python 2.7 environment and almost all code examples
work directly. You may have a Python environment on your workstation or laptop, it may be in
a VM or a Docker instance that you run, or it may be a server instance that you can configure
in the cloud.

Machine Learning

You do not need to be a machine learning expert, but it would be helpful if you knew how
to navigate a small machine learning problem. Concepts and techniques are described at the
beginning of each tutorial, but only briefly enough to give you context. Additional resources are
listed for you to learn more on each concept introduced. There are resources to go into these
topics in more detail at the end of the book, but some knowledge of these areas might make
things easier for you.

1X

Your Outcomes From Reading This Book

This book will lead you from being a developer who is interested in machine learning algorithms
to a machine learning developer that knows how to implement a suite of machine learning
algorithms and techniques from scratch in Python. Specifically, you will know:

How to load from CSV files and prepare data for modeling.

How to select algorithm evaluation metrics and resampling techniques for a test harness.
How to develop a baseline expectation of performance for a given problem.

How to implement and apply a suite of linear machine learning algorithms.

How to implement and apply a suite of advanced nonlinear machine learning algorithms.

How to implement and apply ensemble machine learning algorithms to improve perfor-
mance.

From this outcome you will:

Know how top machine learning algorithms work internally.

Know how to better configure machine learning algorithms in order to get the most out of
them.

Know the myriad of micro-decisions that a machine learning library has hidden from you
in practice.

Know how you might begin to develop your own custom machine learning algorithm
implementations.

What This Book is Not

This book solves a specific problem of getting you, a developer, up to speed on how to implement
top machine learning algorithms from scratch in Python. This book was not intended to be
everything to everyone and it is very important to calibrate your expectations. Specifically:

This is not a machine learning textbook. We will not be getting into the theory
or mathematical description of machine learning algorithms as this is not required to
implement algorithms from scratch. You are also expected to have some familiarity with
machine learning basics, or be able to pick them up yourself.

This is not an applications book. We will be using real-world problems as case studies,
but we will not linger on the best practices for working through machine learning problems
end-to-end.

This is not a Python programming book. We will not be spending a lot of time
on Python syntax and programming (e.g. basic programming tasks in Python). You are
expected to already be familiar with Python or a developer who can pick up a new C-like
language relatively quickly.

Resources are provided in the final chapter if you are interested in focusing on one of these
related areas.

Summary

It is a special time right now. The interest and information available about applied machine
learning is so great. The pace of change of machine learning feels like it has never been so fast,
spurred by the amazing results that the methods are showing in such a broad range of fields.
This is the start of your journey into expanding your understanding of machine learning
algorithms and I am excited for you. Take your time, have fun and I'm so excited to see where

you can take this amazing new technology.

Next

In the next section you will start with your first tutorial on how to load machine learning data.

Chapter 1

Simple Linear Regression

Linear regression is a prediction method that is more than 200 years old. Simple linear regression
is a great first machine learning algorithm to implement as it requires you to estimate properties
from your training dataset, but is simple enough for beginners to understand. In this tutorial,
you will discover how to implement the simple linear regression algorithm from scratch in
Python.

After completing this tutorial you will know:

e How to estimate statistical quantities from training data.
e How to estimate linear regression coefficients from data.

e How to make predictions using linear regression for new data.

Let’s get started.

1.1 Description

This section is divided into two parts: a description of the simple linear regression technique
and a description of the dataset to which we will later apply it.

1.1.1 Simple Linear Regression

Linear regression assumes a linear or straight line relationship between the input variables (X)
and the single output variable (y). More specifically, that output (y) can be calculated from a
linear combination of the input variables (X). When there is a single input variable, the method
is referred to as a simple linear regression.

In simple linear regression we can use statistics on the training data to estimate the coefficients
required by the model to make predictions on new data. The line for a simple linear regression
model can be written as:

y=0b00+01 x2 (1.1)

Where b0 and bl are the coefficients we must estimate from the training data. Once the
coefficients are known, we can use this equation to estimate output values for y given new input

1.2. Tutorial 2

examples of x. It requires that you calculate statistical properties from the data such as mean,
variance and covariance.

All the algebra has been taken care of and we are left with some arithmetic to implement to
estimate the simple linear regression coefficients. Briefly, we can estimate the coefficients as
follows:

51 (e — mean(x)) (y — mean(y)))
S (x; — mean(z))? (1.2)
B0 = mean(y) — B1 x mean(z)

Where the i refers to the value of the ith value of the input x or output y. Don’t worry if
this is not clear right now, these are the functions we will implement in the tutorial.

1.1.2 Swedish Auto Insurance Dataset

In this tutorial we will use the Swedish Auto Insurance Dataset. This dataset involves the
prediction of total claim payments. The baseline RMSE on the problem is approximately 81.099
thousand Kronor. You can learn more about it in Appendix A, Section ?7?7. Download the
dataset and save it into your current working directory with the filename insurance.csv. Note:
you may need to convert the European comma (,) to the decimal dot (.). You will also need
change the file from white-space-separated variables to CSV format.

1.2 Tutorial

This tutorial is broken down into five parts:

1. Calculate Mean and Variance.
2. Calculate Covariance.

3. Estimate Coefficients.

4. Make Predictions.

5. Swedish Auto Insurance Case Study.

These steps will give you the foundation you need to implement and train simple linear
regression models for your own prediction problems.

1.2.1 Calculate Mean and Variance

The first step is to estimate the mean and the variance of both the input and output variables
from the training data. The mean of a list of numbers can be calculated as:

mean(z) = % (1.3)

Below is a function named mean () that implements this behavior for a list of numbers.

1.2. Tutorial 3

Calculate the mean value of a list of numbers
def mean(values):
return sum(values) / float(len(values))

Listing 1.1: Function To Calculate the Mean of a List of Numbers.

The sample variance is the sum squared difference for each value from the mean value. Note,
this is different from the variance of the sample, calculated as the average squared difference
from the mean, rather than the sum. Variance for a list of numbers can be calculated as:

n
variance = Z(xz — mean(x))? (1.4)
i=1
Below is a function named variance() that calculates the variance of a list of numbers. It
requires the mean of the list to be provided as an argument, just so we don’t have to calculate
it more than once.

Calculate the variance of a list of numbers
def variance(values, mean):
return sum([(x-mean)**2 for x in values])

Listing 1.2: Function To Calculate the Variance of a List of Numbers.

We can put these two functions together and test them on a small, contrived dataset. Below
is a small dataset of x and y values.

Ow s N =N
aON W wWeRr<

Listing 1.3: Small Contrived Dataset For Testing.

We can plot this dataset on a scatter plot graph as follows:

1.2. Tutorial 4

Figure 1.1: Plot of the Small Contrived Dataset.

We can calculate the mean and variance for both the x and y values in the example below.

Example of Estimating Mean and Variance

Calculate the mean value of a list of numbers
def mean(values):
return sum(values) / float(len(values))

Calculate the variance of a list of numbers
def variance(values, mean):
return sum([(x-mean)**2 for x in values])

calculate mean and variance

dataset = [[1, 1], [2, 3], [4, 31, [3, 2], [5, 5]1]

x = [row[0] for row in dataset]

y = [row[1] for row in dataset]

mean_x, mean_y = mean(x), mean(y)

var_x, var_y = variance(x, mean_x), variance(y, mean_y)
print('x stats: mean=Y,.3f variance=%.3f' % (mean_x, var_x))
print('y stats: mean=Y,.3f variance=}%.3f' % (mean_y, var_y))

Listing 1.4: Example to Calculate Mean and Variance on the Contrived Dataset.

Running this example prints out the mean and variance for both columns.

x stats: mean=3.000 variance=10.000
y stats: mean=2.800 variance=8.800

Listing 1.5: Example Output of Mean and Variance on the Contrived Dataset.

This is our first step; next we need to put these values to use in calculating the covariance.

1.2.2 Calculate Covariance

The covariance of two groups of numbers describes how those numbers change together. Co-
variance is a generalization of correlation. Correlation describes the relationship between two

1.2. Tutorial 5

groups of numbers, whereas covariance can describe the relationship between two or more
groups of numbers. Additionally, covariance can be normalized to produce a correlation value.
Nevertheless, we can calculate the covariance between two variables as follows:

covariance = z:((xZ —mean(x)) X (y; — mean(y))) (1.5)
i=1
Below is a function named covariance() that implements this statistic. It builds upon
the previous step and takes the lists of x and y values as well as the mean of these values as
arguments.

Calculate covariance between x and y
def covariance(x, mean_x, y, mean_y):
covar = 0.0
for i in range(len(x)):
covar += (x[i] - mean_x) * (y[i] - mean_y)
return covar

Listing 1.6: Function To Calculate the Covariance.

We can test the calculation of the covariance on the same small contrived dataset as in the
previous section. Putting it all together we get the example below.

Example of Calculating Covariance

Calculate the mean value of a list of numbers
def mean(values):
return sum(values) / float(len(values))

Calculate covariance between x and y
def covariance(x, mean_x, y, mean_y):
covar = 0.0
for i in range(len(x)):
covar += (x[i] - mean_x) * (y[i] - mean_y)
return covar

calculate covariance

dataset = [[1, 1], [2, 3], [4, 3], [3, 2], [5, 5]]
x = [row[0] for row in dataset]

y = [row[1] for row in dataset]

mean_x, mean_y = mean(x), mean(y)

covar = covariance(x, mean_x, y, mean_y)
print('Covariance: %.3f' % (covar))

Listing 1.7: Example to Calculate Covariance on the Contrived Dataset.

Running this example prints the covariance for the x and y variables.

Covariance: 8.000

Listing 1.8: Example Output of Calculating Covariance on the Contrived Dataset.

We now have all the pieces in place to calculate the coefficients for our model.

1.2. Tutorial 6

1.2.3 Estimate Coefficients

We must estimate the values for two coefficients in simple linear regression. The first is B1 which
can be estimated as:

2 i (wi — mean(x) X (yi — mean(y))

Bl = 1.6
ST (02— mean(r))? o)

We have learned some things above and can simplify this arithmetic to:
Bl — covariance(x,y) (17)

variance(x)

We already have functions to calculate covariance() and variance(). Next, we need to
estimate a value for B0, also called the intercept as it controls the starting point of the line
where it intersects the y-axis.

B0 = mean(y) — B1 x mean(x) (1.8)

Again, we know how to estimate B1 and we have a function to estimate mean(). We can
put all of this together into a function named coefficients() that takes the dataset as an
argument and returns the coefficients.

Calculate coefficients
def coefficients(dataset):
x = [row[0] for row in dataset]
y = [row[1] for row in dataset]
x_mean, y_mean = mean(x), mean(y)
bl = covariance(x, x_mean, y, y_mean) / variance(x, x_mean)
b0 = y_mean - bl * x_mean
return [b0O, bi]

Listing 1.9: Function To Calculate the Coefficients.

We can put this together with all of the functions from the previous two steps and test out
the calculation of coefficients.

Example of Calculating Coefficients

Calculate the mean value of a list of numbers
def mean(values):
return sum(values) / float(len(values))

Calculate covariance between x and y
def covariance(x, mean_x, v, mean_y):
covar = 0.0
for i in range(len(x)):
covar += (x[i] - mean_x) * (y[i] - mean_y)
return covar

Calculate the variance of a list of numbers
def variance(values, mean):
return sum([(x-mean)**2 for x in values])

Calculate coefficients
def coefficients(dataset):

1.2. Tutorial 7

x = [row[0] for row in datasetl]

y = [row[1] for row in dataset]

x_mean, y_mean = mean(x), mean(y)

bl = covariance(x, x_mean, y, y_mean) / variance(x, x_mean)
b0 = y_mean - bl * x_mean

return [bO, bi]

calculate coefficients

dataset = [[1, 11, [2, 3], [4, 31, [3, 2], [5, 5]]
b0, bl = coefficients(dataset)
print('Coefficients: BO=Y.3f, B1=}.3f' % (b0, bl))

Listing 1.10: Example to Calculate Coefficients on the Contrived Dataset.

Running this example calculates and prints the coefficients.

Coefficients: B0=0.400, B1=0.800

Listing 1.11: Example Output of Calculating Coefficients on the Contrived Dataset.

Now that we know how to estimate the coefficients, the next step is to use them.

1.2.4 Make Predictions

The simple linear regression model is a line defined by coefficients estimated from training data.
Once the coefficients are estimated, we can use them to make predictions. The equation to
make predictions with a simple linear regression model is as follows:

y=0b00+01 x2 (1.9)

Below is a function named simple linear regression() that implements the prediction
equation to make predictions on a test dataset. It also ties together the estimation of the
coefficients on training data from the steps above. The coefficients prepared from the training
data are used to make predictions on the test data, which are then returned.

def simple_linear_regression(train, test):
predictions = list()
b0, bl = coefficients(train)
for row in test:
yhat = b0 + bl * row([0]
predictions.append(yhat)
return predictions

Listing 1.12: Function To Run Simple Linear Regression.

Let’s pull together everything we have learned and make predictions for our simple contrived
dataset. As part of this example, we will also add in a function to manage the evaluation of
the predictions called evaluate_algorithm() and another function to estimate the Root Mean
Squared Error of the predictions called rmse metric(). The full example is listed below.

Example of Standalone Simple Linear Regression
from math import sqrt

Calculate root mean squared error
def rmse_metric(actual, predicted):
sum_error = 0.0

1.2. Tutorial

for i in range(len(actual)):
prediction_error = predicted[i] - actuallil
sum_error += (prediction_error ** 2)
mean_error = sum_error / float(len(actual))
return sqrt(mean_error)

Evaluate regression algorithm on training dataset
def evaluate_algorithm(dataset, algorithm):
test_set = list()
for row in dataset:

row_copy = list(row)

row_copy[-1] = None

test_set.append (row_copy)
predicted = algorithm(dataset, test_set)
print (predicted)
actual = [row[-1] for row in dataset]
rmse = rmse_metric(actual, predicted)
return rmse

Calculate the mean value of a list of numbers
def mean(values):
return sum(values) / float(len(values))

Calculate covariance between x and y
def covariance(x, mean_x, y, mean_y):
covar = 0.0
for i in range(len(x)):
covar += (x[i] - mean_x) * (y[i] - mean_y)
return covar

Calculate the variance of a list of numbers
def variance(values, mean):
return sum([(x-mean)**2 for x in values])

Calculate coefficients
def coefficients(dataset):
X [row[0] for row in dataset]
y = [row[1] for row in dataset]
x_mean, y_mean = mean(x), mean(y)
bl = covariance(x, x_mean, y, y_mean) / variance(x, x_mean)
b0 = y_mean - bl * x_mean
return [bO, bi]

Simple linear regression algorithm
def simple_linear_regression(train, test):
predictions = list()
b0, bl = coefficients(train)
for row in test:
yhat = b0 + bl * row[0]
predictions.append(yhat)
return predictions

Test simple linear regression

dataset = [[1, 11, [2, 31, [4, 31, [3, 21, [5, 511

rmse = evaluate_algorithm(dataset, simple_linear_regression)
print ('RMSE: %.3f' % (rmse))

1.2. Tutorial 9

Listing 1.13: Example of Simple Linear Regression on the Contrived Dataset.

Running this example displays the following output that first lists the predictions and the
RMSE of these predictions.

[1.1999999999999995, 1.9999999999999996, 3.5999999999999996, 2.8, 4.3999999999999995]
RMSE: 0.693

Listing 1.14: Example Output Simple Linear Regression on the Contrived Dataset.

Finally, we can plot the predictions as a line and compare it to the original dataset.

3 < < oy

M predictions

Figure 1.2: Plot of the Simple Linear Regression Predictions on the Contrived Dataset.

1.2.5 Swedish Auto Insurance Case Study

We now know how to implement a simple linear regression model. Let’s apply it to the
Swedish insurance dataset. This section assumes that you have downloaded the dataset to
the file insurance.csv and it is available in the current working directory. We will add some
convenience functions to the simple linear regression from the previous steps.

Specifically a function to load the CSV file called load csv(), a function to convert a
loaded dataset to numbers called str_column to_float(), a function to evaluate an algorithm
using a train and test set called train test_split() a function to calculate RMSE called
rmse metric() and a function to evaluate an algorithm called evaluate_algorithm().

The complete example is listed below. A training dataset of 60% of the data is used to
prepare the model and predictions are made on the remaining 40%.

Example of Simple Linear Regression on the Swedish Insurance Dataset
from random import seed

from random import randrange

from csv import reader

from math import sqrt

1.2. Tutorial

Load a CSV file
def load_csv(filename):
dataset = list()
with open(filename, 'r') as file:
csv_reader = reader(file)
for row in csv_reader:
if not row:
continue
dataset .append (row)
return dataset

Convert string column to float
def str_column_to_float(dataset, column):
for row in dataset:
row[column] = float(row[column].strip())

Split a dataset into a train and test set
def train_test_split(dataset, split):
train = list()
train_size = split * len(dataset)
dataset_copy = list(dataset)
while len(train) < train_size:
index = randrange(len(dataset_copy))
train.append(dataset_copy.pop(index))
return train, dataset_copy

Calculate root mean squared error
def rmse_metric(actual, predicted):
sum_error = 0.0
for i in range(len(actual)):
prediction_error = predicted[i] - actualli]
sum_error += (prediction_error ** 2)
mean_error = sum_error / float(len(actual))
return sqrt(mean_error)

Evaluate an algorithm using a train/test split

def evaluate_algorithm(dataset, algorithm, split, *args):

train, test = train_test_split(dataset, split)
test_set = 1list()
for row in test:
row_copy = list(row)
row_copy[-1] = None
test_set.append(row_copy)
predicted = algorithm(train, test_set, *args)
actual = [row[-1] for row in test]
rmse = rmse_metric(actual, predicted)
return rmse

Calculate the mean value of a list of numbers
def mean(values):
return sum(values) / float(len(values))

Calculate covariance between x and y
def covariance(x, mean_x, y, mean_y):
covar = 0.0
for i in range(len(x)):

10

1.3. Extensions 11

covar += (x[i] - mean_x) * (y[i] - mean_y)
return covar

Calculate the variance of a list of numbers
def variance(values, mean):
return sum([(x-mean)**2 for x in values])

Calculate coefficients
def coefficients(dataset):
x = [row[0] for row in dataset]
y = [row[1] for row in dataset]
x_mean, y_mean = mean(x), mean(y)
bl = covariance(x, x_mean, y, y_mean) / variance(x, x_mean)
b0 = y_mean - bl * x_mean
return [bO, bi]

Simple linear regression algorithm
def simple_linear_regression(train, test):
predictions = list()
b0, bl = coefficients(train)
for row in test:
yhat = b0 + bl * row[0]
predictions.append(yhat)
return predictions

Simple linear regression on insurance dataset

seed (1)
load and prepare data
filename = 'insurance.csv'

dataset = load_csv(filename)
for i in range(len(dataset[0])):
str_column_to_float(dataset, i)
evaluate algorithm
split = 0.6
rmse = evaluate_algorithm(dataset, simple_linear_regression, split)
print ('RMSE: %.3f' % (rmse))

Listing 1.15: Example of Simple Linear Regression on the Insurance Dataset.

Running the algorithm prints the RMSE for the trained model on the training dataset. A
score of about 33 (thousands of Kronor) was achieved, which is much better than the baseline
performance of 81 (thousands of Kronor) on the same problem.

RMSE: 33.630

Listing 1.16: Example Output Simple Linear Regression on the Insurance Dataset.

1.3 Extensions

The best extension to this tutorial is to try out the algorithm on more problems. Small datasets
with just an input (x) and output (y) columns are popular for demonstration in statistical books
and courses. Many of these datasets are available online. Seek out some more small datasets
and make predictions using simple linear regression.

1.4. Review 12

1.4 Review

In this tutorial, you discovered how to implement the simple linear regression algorithm from
scratch in Python. Specifically, you learned:

e How to estimate statistics from a training dataset like mean, variance and covariance.
e How to estimate model coefficients and use them to make predictions.

e How to use simple linear regression to make predictions on a real dataset.

1.4.1 Further Reading

e Section 3.1 Simple Linear Regression, page 61, An Introduction to Statistical Learning,

2014.
http://amzn.to/2eeTyQX

e Section 18.6. Regression and Classification with Linear Models, page 717, Artificial
Intelligence: A Modern Approach, 2010.
http://amzn.to/2e31FqP

1.4.2 Next

In the next tutorial, you will discover how to implement and apply the multivariate linear

regression algorithm.

http://amzn.to/2eeTyQX
http://amzn.to/2e3lFqP

This is Just a Sample

Thank-you for your interest in Machine Learning Algorithms From Scratch.
This is just a sample of the full text. You can purchase the complete book online from:
https://machinelearningmastery.com/machine-learning-algorithms-from-scratch/

MAGHINE LEARNING
i MASTERY

Machine
Learning
Algorithms

FROM SCRATCH

Discover How They Work
and Implement Them

From Scratch

Jason Brownlee

13

https://machinelearningmastery.com/machine-learning-algorithms-from-scratch/

	Copyright
	Welcome
	Simple Linear Regression
	Description
	Tutorial
	Extensions
	Review

