Department of Informatics

Series of Exercises 02 Sets, Functions and Binary Relation

Exercice 1 Let the following sets : $A =]-\infty, 3], B = [-2, 8], C =]-5, +\infty[, D = \{x \in \mathbb{R}, |x-3| \le 5\}$

- 1. What are the equality or inclusion relationships that exist between these sets?
- 2. Find the complement in the following cases: $C_{\mathbb{R}}A, C_{\mathbb{R}}B, C_{\mathbb{R}}C, C_{C}B$.
- 3. Find $A \cap B$, $A \cup B$, $A \cap C$, $A \cup C$, $A \setminus C$, $(\mathbb{R} \setminus A) \cap (\mathbb{R} \setminus B)$, and $A \triangle B$.

Exercice 2 Let the set E and A, B, D are three parts of E

- a. Show that:
 - 1. $A \subset B \Rightarrow C_E B \subset C_E A$
 - 2. $(A \setminus B) \setminus D = A \setminus (B \cup D)$
 - 3. $C_E A \triangle C_E B = A \triangle B$
 - 4. $(A \times D) \cup (B \times D) = (A \cup B) \times D$
- b. Simplify
 - 1. $C_E(A \cup B) \cap C_E(D \cup C_E A)$
 - 2. $C_E(A \cap B) \cup C_E(D \cap C_E A)$. (homework)

Exercice 3 Let the functions $f : [0,1] \to [0,2]$ with f(x) = 2 - x and $g : [-1,1] \to [0,2]$ with $g(x) = x^2 + 1$

- 1. Find $f(\lbrace \frac{1}{2} \rbrace), f^{-1}(\lbrace 0 \rbrace), g([-1,1]), g^{-1}[0,2]$
- 2. Study the injectivity and surjectivity of f, is the function f bijective?
- 3. Study the injectivity and surjectivity of q, is the function q bijective?
- 4. Can we calculate $q \circ f$ and $f \circ q$ Justify.

Exercice 4 Let f the application defined by:

$$f: E \longrightarrow \mathbb{R}$$
$$x \longmapsto f(x) = \frac{1}{\sqrt{x^2 - 1}}$$

- 1. Find E so that f is an application.
- 2. We take : $E =]-\infty, -1[\cup]1, +\infty[$
 - a) Determine $f\left(\left\{-\sqrt{2},\frac{5}{3},\sqrt{2}\right\}\right)$ and $f^{-1}\left(\left\{0\right\}\right)$.
 - b) Is the application f injective? Is it surjective? Justify your answer.
- 3. Show that the restriction $g:]1, +\infty[\longrightarrow]0, +\infty[, g(x) = f(x)$ is bijective.
- 4. Determine the inverse application g^{-1} .

Exercice 5 Let $f: E \to F$ be a function. Let A and A' be two subsets of E, and let B and B' be two subsets of F. Show that:

$1 - A \subset f^{-1}(f(A))$	$2 - f(f^{-1}(B)) \subset B(\ homework\)$
$3- f(A \cup A') = f(A) \cup f(A')$	$4-f \ injective \Rightarrow f(A \cap A') = f(A) \cap f(A') \ (\ homework\)$
$5 - f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B')$	$6 - f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B') \text{ (homework)}$

Exercice 6 We define the relation \Re on $\mathbb R$:

$$\forall x, y \in \mathbb{R}, \quad x\Re y \Leftrightarrow x^4 - y^4 = x^2 - y^2$$

- 1. Show that \Re is an equivalence relation.
- 2. Find the equivalence class of 0, and deduce that of 1.
- 3. Determine the equivalence class of x for any real x.

Exercice 7 We define the binary relation \mathcal{R} in \mathbb{N}^* by :

$$\forall x, y \in \mathbb{N}^*, \quad x\mathcal{R}y \Leftrightarrow \exists n \in \mathbb{N} \quad such \ that : y^n = x$$

- 1. Show that R is a order relation.
- 2. Is this order total? Justify your answer.

Exercice 8 We define the relation \mathcal{R} in \mathbb{R}^2 :

$$\forall (x,y); (x',y') \in \mathbb{R}^2, (x,y)\mathcal{R}(x',y') \Leftrightarrow |x-x'| \le y'-y$$

- 1. Verify that: $(1,2)\mathcal{R}(4,7)$ and $(2,3)\mathcal{R}(5,3)$.
- 2. Show that \mathcal{R} is a order relation.
- 3. Is the order total or partial?