

Course 2: Information coding systems

by

Dr. Samira LAGRINI

lagrini.samira83@gmail.com

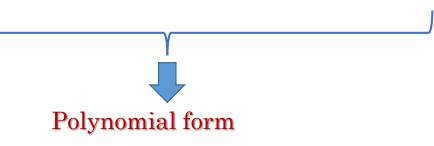
Course link: https://elearning-facsci.univ-annaba.dz/course/view.php?id=469

Introduction

- ☐ Computers process various types of information, such as numbers, text, images, and videos.
- ☐ This information is always represented in binary form (a sequence of 0s and 1s) such as: 01001011, 11000011, and so on.
- ☐ The process that allows converting the original representation of information (numbers, text, etc.) into a binary form is called **information coding**.
- □ Coding involves using a number system (binary) to represent the data,

Number systems

1. What is Number System?


- Number systems are frameworks used to express numbers in a symbolic form.
- There are four number systems :
 - Binary
 - Octal
 - Decimal
 - Hexadecimal

a. Decimal number system

- The decimal number system contains ten unique symbols $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \rightarrow base 10$
- It is a positional weighted system, The value attached to the symbol depends on its location with respect to the decimal point.

For example:

the number 5368 is written as: $5368 = 8*10^{0}+6*10^{1}+3*10^{2}+5*10^{3}$

$$\underline{5368}$$
, $\underline{135} = 5*10^3 + 3*10^2 + 6*10^1 + 8*10^0 + 1*10^{-1} + 3*10^{-2} + 5*10^{-3}$

The integer part

The fraction part.

b. Binary number system

- The binary number system is a positional weighted system.
- The symbols used are $\{0,1\}$ \rightarrow base=2

Example:

$$(\underline{1}101110\underline{1})_2$$

Most significant bit (MSB) Less significant bit(LSB)

Example:

$$(11011101)_2 = 2^{0*}1 + 2^{1*}0 + 2^{2*}1 + 2^{3*}1 + 2^{4*}1 + 2^{5*}0 + 2^{6*}1 + 2^{7*}1$$

= $(221)_{10}$

(1110010.01)2

c. Octal number system

- It is also a positional weighted system.
- It has 8 independent symbols $\{0,1,2,3,4,5,6,7\}$

Example:

$$(175)_8 = 80*5 + 81*7 + 82*1$$

= $(125)_{10}$

d. Hexadecimal number system

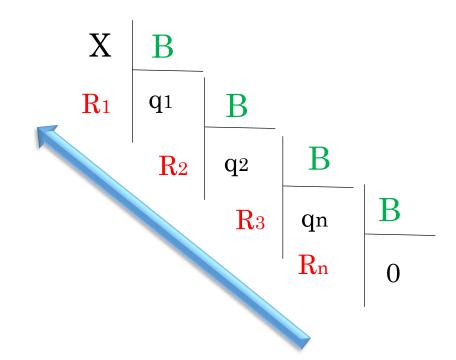
- The symbols used are : {0,1,2,3,4,5,6,7,8,9,**A**,**B**,**C**,**D**,**E**,**F**}
- → The base or radix of this number system is 16,

Example:

- (AB01)₁₆
- (150F)₁₆

CONVERSION FROM ONE NUMBER SYSTEM TO ANOTHER

Conversion from base 'B' to base 10


- Use polynomial representation
- $X = (a_{n..}a_2a_1a_0)_b = b^0a_0 + b^1a_{1+...}b^na_n = (\sum a_ib^i)_{10}$

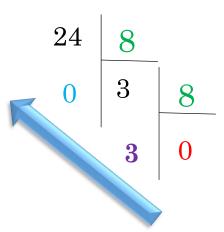
Examples:

- $(110111101,1)_2 = 2^{-1}*1 + 2^{0}*1 + 2^{1}*0 + 2^{2}*1 + 2^{3}*1 + 2^{4}*1 + 2^{5}*0 + 2^{6}*1 + 2^{7}*1 = (221,5)_{10}$
- (175,26)8= 8⁻¹*2+8⁻²*6 + 8⁰*5+8¹*7+8²*1
- $(14)_{16} = 16^{0} * 4 + 16^{1} * 1 = (20)_{10}$

Conversion from base 10 to another base B

- The number is converted to the desired base 'B' using successive division by the Base 'B'.
- Take the remainders of successive divisions on the base X in the opposite direction.

$$(X)_{10} = (R_n..R_3R_2R_1)_{\mathbf{B}}$$


Conversion: decimal to base (2,8,16)

Soit $X=(24)_{10}$

decimal → binary

$$(24)_{10} = (11000)_2$$

decimal → Octal

$$(24)_{10} = (30)_8$$

decimal → hexadecimal

$$i(24)_{10} = (18)_{16}$$

Trick: decimal to binary

Use the table below to represent the number written in decimal as a sum of powers of 2.

Example

 $80=64+16=2^{6}+2^{4} \rightarrow the \ bits \ of \ weight \ 0,1,2,3,5,7 \ are \ set \ to \ 0$

 $19=16+2+1=2^{4}+2^{1}+2^{0} \rightarrow the \ bits \ of \ weight \ 2,3,5,6,7 \ are \ set \ to \ 1$

	28	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2	2	2	
	256	128	64	32	16	8	4	2	1	
80	0	0	1	0	1	0	0	0	0	
19	0	0	0	0	1	0	0	1	1	

$$(80)_{10} = (1010000)_2$$

$$(19)_{10} = (10011)_2$$

Conversion: decimal to binary

• Convert (80.15)10 into binary.

Integer part:

 $(80)_{10} = (1010000)_2$

Fraction part:

$$0.15 \times 2 = 0.30$$

$$0.30 \times 2 = 0.60$$

$$0.60 \times 2 = 1.20$$

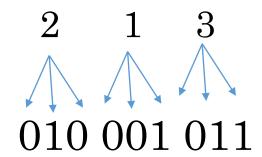
$$0.20 \times 2 = 0.40$$

$$0.40 \times 2 = 0.80$$

$$0.80 \times 2 = 1.60$$

Result of (80.15)10 is (1010000.001001)2

Conversion: binary = octal


Binary → Octal

- ➤ Make 3-bit groupings starting from the least significant bit (LSB).
- ➤ Replace each grouping with the corresponding value.

$$(10111101)_{2}$$
 $2 \quad 7 \quad 5$
 $(275)_{8}$

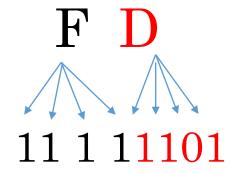
Octal > Binary

➤ Replace each symbol in the octal base with its 3-bit binary value

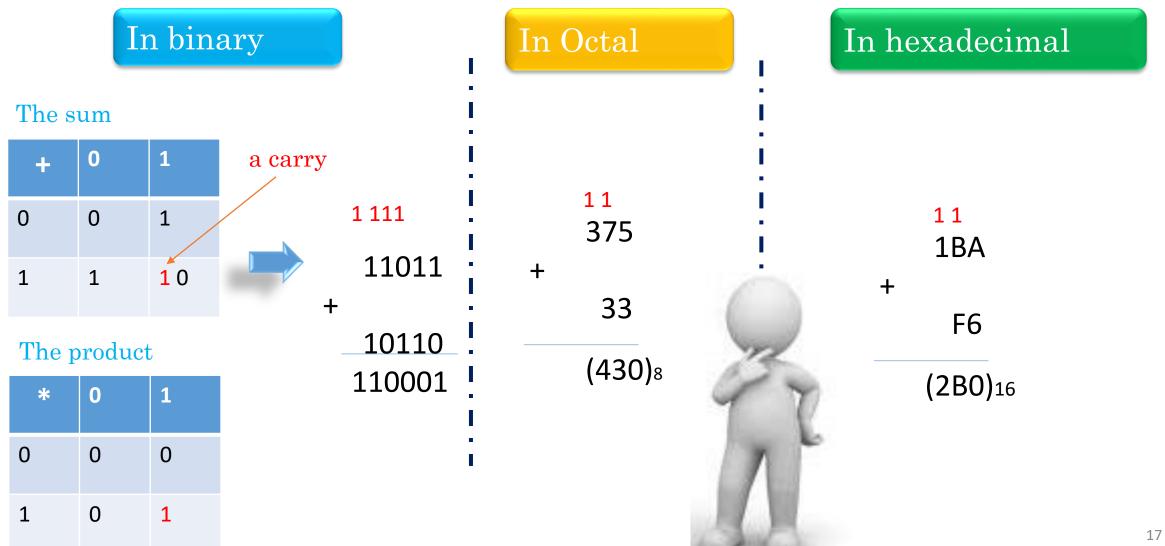
Conversion: binary = hexadecimal

Binary → hexadecimal

- ➤ Make 4-bit groupings starting from the least significant
- Replace each grouping with the corresponding value.


$$(10111101, 0100)_2$$

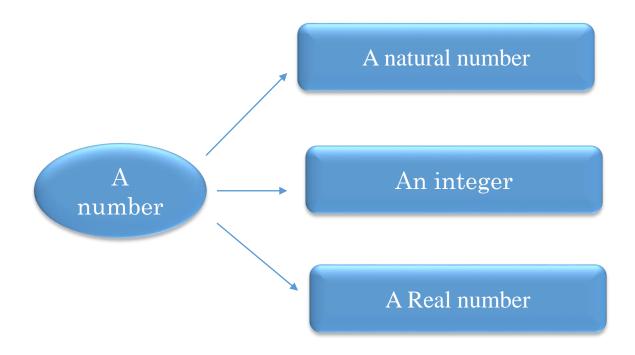
B D, 4


(BD 4)₁₆

Hexadecimal > binary

➤ Replace each symbol in the hexadecimal base with its value in 4-bit binary

Arithmetic operations (the sum)


Exercise

- Perform the following operations and transform the result to decimal
- $(1101,111)_2+(11,1)_2=(?)_2$
- (43)8+(76)8=(?)8
- $(AB1)_{16}+(237)_{8}=(?)_{16}$

Information Coding

1. Coding of digital data

1. Coding of natural number

- 'The pure binary code'

- A natural number is a positive integer or zero.
- To code natural integers we use the pure binary code (PBC):
- According to (PBC), the natural number is represented in <u>base 2 on N bits</u>.
- The choice of how many bits to use depends on the range of numbers to be used.

Exemple:

- on one byte (8 bits), $(17)_{10}$ is encoded in pure binary as follows: 00010001
- On 1 byte (8 bits): we can code 28 values: [0; 255]
- On 2 bytes(16 bits): we can code 2^{16} values : $[0; 2^{16}-1]$
- On n bytes: we can code 2ⁿ values: [0; 2ⁿ-1]

2. Coding of signed integers

Two's Complement

- ☐ An integer is a whole number which may be negative.
- ☐ 'The two's complement' is one of the techniques used to represent integers.

The representation of a number 'X' in 2's complement on 'n' bits is done as follow:

- \rightarrow if ($X \ge 0$) then X is encoded in the same way as in pure binary.
- \rightarrow if (X<0) then:
- 1. Code |X| in binary by completing on the left with 0 to obtain an n-bit code
- 2. Invert all bits of the binary representation (one's complement);
- 3. Add 1 to the result (two's complement or C2)

The 2's Complement -(Trick)-

Transforming a binary number into its 2's complement can be done as follows:

Look at the number from right to left, leaving the bits before the first '1' unchanged, then invert all subsequent bits.

Example: code the number -24 in 2's complement on 8 bits

 $24 = (00011000)_2$

• Invert the left part after the first 1 (written in red): 11101000

→ -24 : 1110**1**000

Comments

- The highest-weighted bit is $1 \rightarrow$ it is a negative number.
- If you add 5 and -5 (00000101 + 111111011) the sum is 0 (with remainder 1).

3.Real Numbers Encoding

How to represent a number with a decimal point in binary? In other words, how to encode real numbers???

IEEE standard 754 defines how to encode real numbers.

IEEE standard 754

- This standard offers a way to code a real number using 32 bits (simple precision).
- IEEE 754 defines three components:

S: represents the sign (0: positive/1: negative).

It is represented by one bit, the highest-weighted bit

E: the exponent is encoded using 8 bits immediately after the sign

M: the mantissa (the bits after the decimal point) on the remaining 23 bits

Steps for representation using IEE standard 754

1. Encode X in binary in the form:

$$X = \pm 1, M \cdot 2^{dec}$$

2. Compute the exponent E

$$E = dec + 127$$

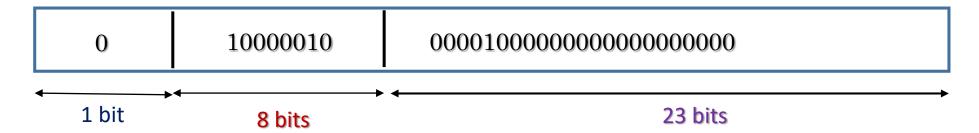
3. Represent the 3 components (S, E, M) on 32 bits

IEEE standard 754-(examples)-

• *Example 1*: compute the binary representation of (8,25)10 under IEEE standard 754

Solution

8,25 is positive, so the first bit will be 0 (S=0)


• Its representation in base 2 is:

•
$$(8,25)10=(1000, 01)2$$

=1,00001*23 dec

IEEE standard 754 -(examples)-

$$E = dec + 127 = 3 + 127 = (130)_{10}$$

= $(10000010)_2$

As the mantissa must take up 23 bits, zeroes must be added to complete it:

The binary representation of 8,25 under IEEE standard 754 is therefore:

 $=(41040000)_{16}$

IEEE standard 754

Example 2:

The value (20,5)10 is to be encoded using IEEE standard 754

$$(20,5)10 = (10100,1)2$$

= + 1,01001 *2⁴

- \triangleright S =0
- > E= 127+4 =131=10000011
- \rightarrow M= 01001

The binary representation of the number 20,5 under IEEE standard 754 is:

C. Conversion from IEEE Standard 754 to Decimal

To convert a number 'X' coded according to the IEEE standard 754 to decimal, you simply need to decompose this number into its elements: S,E,M, then estimate its representation in floating point format (X= \pm 1,M . 2dec)

Example

$$X=+1110,10=(14,5)_{10}$$

2. Characters coding

Character | letter (A-Z, a-z), number (0,1,2,3,4,5,6,7,8,9), punctuation (;.?!....) symbol (&, \$, %,,...)

Characters encoding is the process of converting characters(letters, numbers, punctuation, and symbols) into unique format for transmission or storage in computers.

Character coding

Data is represented in computers using:

- > ASCII
- > UTF8
- ➤ UTF32
- > ISCII
- ➤ Unicode.

ASCII

- □ASCII standard known as American Standard Code for Information Interchange was first published in 1963.
- □ASCII is an 8-bit code standard that divides the 256 slots as follows:
- Codes from 48 to 57: numbers in order (0,1,...,9)
- Codes from 65 to 90: capital letters (A....Z)
- Codes from 97 to 122: lowercase letters (a....z).

ASCII

*******	0		24	1	48	0	72	H 96	`	120	×	144	É	168	į	192	L	216	÷	240	≡l
	1	⊚	25	↓	49	1	73	I 97	a	121	y	145	æ	169	r	193	Т	217	J	241	±
-	2	9	26	→	50	2	74	J 98	b	122	z	146	Æ	170	٦	194	Т	218	Г	242	≥
-	3	•	27	+	51	3	75	K 99	С	123	{	147	ô	171	1/2	195	╌	219		243	≤
-	4	•	28	니	52	4	76	L 100	d	124	- 1	148	ö	172	1/4	196	_	220		244	ſl
*********	5	#	29	#	53	5	77	M 101	е	125	}	149	ò	173	i	197	+	221		245	J
***************************************	6	♠	30	-	54	6	78	N 102	f	126	~	150	û	174	**	198	ŀ	222		246	÷
	7		31	-	55	7	79	0 103	9	127	Δ	151	ù	175	>>	199	╢	223		247	≈
-	8		32		56	8	80	P 104	h	128	Ç	152	ÿ	176		200	L	224	α	248	°
***************************************	9		33	•	57	9	81	Q 105	i	129	ü	153	Ö	177		201	<u> [[</u>	225	B	249	-
	10		34	"	58	:	82	R 106	j	130	é	154	Ü	178		202	11	226	Γ	250	•
-	11	♂∣	35	#	59	;	83	S 107	k	131	â	155	¢	179		203	īī	227	Π	251	4
-	12	₽	36	\$	60	<	84	T 108	1	132	ä	156	£	180	1	204	Ī	228	Σ	252	n
-	13	_	37	%	61	=	85	U 109	m	133	à	157	¥	181	1	205	=	229	σ	253	2
	14	끼	38	&	62	>	86	V 110	n	134	å	158	Ę	182	1	206	Ĭ	230	μ		
	15	×	39	١.	63	?	87	W 111	٥	135	Ç	159	f	183	П	207		231	Υ	255	a
	16	- ▶	40		64	@	88	X 112	р	136	ê	160	á	184	a.	208	Щ	232	₹		
	17	ાં	41)	65	A	89	Y 113	q	137	ë	161	í	185	il	209	₹	233	θ		
	18	1	42	×	66	В	90	Z 114	r	138	è	162	Ó	186		210		234	Ω		
	19	!	43	+	67	c	91	[115	s	139	ï	163	ú	187]]	211	_	235	δ		
***********	20	1	44	,	68	P	92	\ 116	t	140	î	164	ñ	188		212	F	236	ω		
-	21	§	45	-	69	E	93] 117	u	141	ì	165	Ñ	189	П	213	F	237	ø		
-	22	-	46		70	F	94	118	٧	142	Ä	166	<u>a</u>	190	4	214	П	238	Ε		
	23	‡	47	71	71	G	95	_ 119	W	143	Å	167	으	191	٦	215	Ħ	239	N	1	

Exercises

1. Convert the word 'DATA' into its ASCII binary codes.

Answer:

Character	ASCII Decimal	Binary (8 bits)
D	68	01000100
A	65	01000001
Т	84	01010100
A	65	01000001

DATA -> 01000100 01000001 01010100 01000001

Exercises

- Decode it into text using the ASCII table.
- **Description:** Which word does this binary sequence represent?

Answer:

THANK YOU