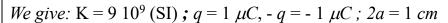
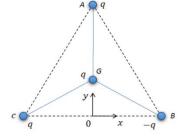
2025/2026

Module: General Electricity

SERIES 2 (Part 1)

(Coulomb's Law, Electric Field and Electric Potential)


Exercise 1:


Let us consider two point charges q_1 , $q_2 > 0$, placed at A (- a, θ) and B (a, θ) on an Ox axis.

- 1. Represent the force vector acting on the two charges.
- 2. Determine the repulsive force between the two charges.

Exercise 2:

Calculate the force exerted by three charges placed at the vertices of an equilateral triangle of side 2a, on a charge located at the center of this triangle.

Exercise 3:

Consider two charges q_1 , q_2 placed in the same line at a fixed distance r.

- 1. Where can a third charge q_3 be placed to obtain electrostatic equilibrium?
- Case 1: q₁ < q₂ and both charges are positive.
 Case 2: |q₁| < |q₂| with q₁ positive and q₂ negative.
- 2. Find this distance for : $q_1 = +2 \text{ nC}$, $q_2 = +18 \text{ nC}$ and r = 25 cm.

Exercise 4:

Consider four point charges q_A , q_B , q_c and q_D placed at the vertices of a square ABCD of side 2a.

- 1. Find the electric field created by these charges at the point G (center of the square).
- 2. Deduce the force exerted by the other charges on the charge q_G placed at point G.
- 3. Determine the electric potential V at the point G and at the origin of coordinates.

We give: In an orthonormal coordinate system, the points A(2a, 2a), B(2a, 0), C(0, 0)and D(0, 2a).

$$q_A = q_G = +q$$
 ; $q_B = q_C = q_D = -q$

$$q = 2 \mu C$$
 ; $a = 10 cm$