Series 2 solution of mathematical logic tutorial

Promotion: Second year LMD

Year 2024/2025

Exercise 1 Solution:

1- The formal system that produces theorems \mathbf{kst} , \mathbf{kststk} , $\mathbf{kststst}$,..... from the axiom \mathbf{k} is:

- The set of alphabet $\Sigma = \{k, s, t\}$.
- The set **W** which represents all the words generated by this formal system as well as the axioms used. Such us $\mathbf{W} = \{k, kst, kstst, kststst, kstststst,\}$.
- The set of axioms $\mathbf{A} = \{k\}.$
- The set of deduction rules **R** which contains a single rule r_1 such as **R** = $\{r_1 : x \longrightarrow xst | x \in \mathbf{W}\}.$
- 2-The formal system that produces theorems \mathbf{ca} , \mathbf{caba} , \mathbf{cababa} , $\mathbf{cabababa}$, from the axiom \mathbf{c} is :
 - The set of alphabet $\Sigma = \{a, b, c\}$.
 - The set **W** $\{c, ca, caba, cababa, cabababa,\}$.
 - The set of axioms $\mathbf{A} = \{c\}$.
 - The set of deduction rules **R** that contains two rules r_1 and r_1 such as **R** = $\{r_1: c \longrightarrow ca, r_2: cx \longrightarrow cxba\}$ such as **x** is any sequence $\in \{a, b, c\}$ and $\mathbf{x} \neq \epsilon$.
- 3- The formal system that produces theorems **b**, **ba**, **baaa**, **baaaa**, **baaaa**,..... from the axiom **b** is :
 - The set of alphabet $\Sigma = \{a, b\}$.
 - The set \mathbf{W} {b, ba, baa, baaa, baaaa,}.
 - The set of axioms $\mathbf{A} = \{b\}.$
 - The set of deduction rules $\mathbf{R} = \{r_1 : bx \longrightarrow bxa\}$

Exercise 2 Solution:

1- To prove that **MUIUI** is a theorem, we are going to use the derivation tree so to arrive at **MUIUI** which is the leaf of the tree we are looking for, we just have to do (starting with the axiom) :

$$MI \xrightarrow{R2} MII \xrightarrow{\acute{R2}} MIIII \xrightarrow{R3} MUI \xrightarrow{R2} MUIUI$$
 True.

- 2- UM is not a theorem because from the axiom MIwe cannot reach UM that is to say: The axiom MI contains M at the beginning and all the rules allow you to generate M at the beginning according to the axiom, i.e. no rule allows you to rewrite the M (example: which has the form $M \longrightarrow ...$).
- 3- MU is not a theorem and we can prove this using another theorem-producing system well known as arithmetic.

The sequence **MU** contains zero (**I**) which is a multiple of 3 and the axiom at the beginning **MI** contains a single (**I**) therefore a number of (**I**) not a multiple of 3. So we have to look for a way to eliminate the **I** based on the inference rules.

We notice that the rules **R1** and **R4** do not change the number of **I**. The rule **R3** decreases the number of **I** by 3, so it doesn't change it unless it is divisible by 3. The rule **R2** doubles the number of **I**. Since 2n can only be divided by 3 if n is divisible by 3 and the rule **R2** does not produce a multiple of 3, therefore no rule produces a multiple of 3. **Conclusion**: **MU** is not a theorem

Promotion: Second year LMD

Year 2024/2025

Note: With the derivation tree, the system MIU is not decidable for MU.

Exercise 3 Solution:

1- For the sequence //p/q/// yes we can.

Proof:

using the derivation tree, we can have : pq \xrightarrow{a} /pq/ \xrightarrow{a} //pq// \xrightarrow{b} //p/q///.

2- We cannot find /p//q/, because according to the rules of the p-q system, we always have theorems which have the following form : r(//...//)p s(//.../)q r+s(//...//).

For the sequence /////p///q////// yes we can.

Proof:

 $\begin{array}{c} \operatorname{pq} \xrightarrow{a} / \operatorname{pq} / \xrightarrow{a} / / \operatorname{pq} / / \xrightarrow{a} / / / \operatorname{pq} / / \xrightarrow{a} / / / / \operatorname{pq} / / / \xrightarrow{a} / / / / \operatorname{pq} / / / / \xrightarrow{a} / / / / \operatorname{pq} / / / / \xrightarrow{b} / / / / \operatorname{pq} / / / / / \xrightarrow{b} / / / / \operatorname{pq} / / / / / / \xrightarrow{b} / / / / \operatorname{pq} / / / / / / / \end{array}$

Exercise 4 Solution:

1- D \xrightarrow{a} DC Yes.

2- D \xrightarrow{a} DC \xrightarrow{a} DCC \xrightarrow{a} DCCC Yes.

3- D \xrightarrow{b} ADA \xrightarrow{b} AADAA \xrightarrow{b} AAADAAA Yes.

4- D \xrightarrow{a} DCC \xrightarrow{a} DCCC \xrightarrow{b} ADCCCA \xrightarrow{a} ADCCCACC \xrightarrow{b} ADCCCACC \xrightarrow{b} AADCCCABCA \xrightarrow{c} AADCCCABCA \xrightarrow{c} AADCCCABBA Yes.

Exercise 5 Solution:

 Q_1 -

1- a^4bc^4 is a theorem.

Proof:

From the set A of axioms we can generate the axiom $A_1 = a^3bc$ by replacing the i in the set A by 1.

By applying the rule R_1 using the axiom A_1 , i.e. we replace the first element of the rule by A_1 and the second $(R_1) = (A_1, A_1)$ we will have : $(a^3bc, a^3bc) \xrightarrow{R_1} a^4bc^4$. o a^4bc^4 is a theorem.

2

2- a^6bc^6 is a theorem.

Proof:

- First, we create the first axiom $A_1 = a^5bc^3$ by replacing in the general form of the axioms the i by 2.

Promotion: Second year LMD

Year 2024/2025

-We also create a second axiom $A_2 = a^3bc$ by replacing i in the general form of the axioms with 1.

By applying the rule $R_1 = (a^5bc^3, a^3bc) \xrightarrow{R_1} a^6bc^6$. So a^6bc^6 is a theorem.

 $3-a^5bc^5$ is not a theorem.

Proof:

Because if we add two axioms according to the rule R_1 , we always find an even number of i (number of a = the number of c) and if we add a theorem generated with an even number of i and an axiom, we will never find equality between a and c.

 Q_2 -

To find the possible forms of theorems, we must try to apply the inference rule by changing the elements of this rule (incoming data).

1- The first validated form is the form of axioms, i.e. $forme_1 = \{a^{2i+1}bc^{2i-1}|i \geq 1\}.$

From the axioms, we can apply rule R_1 , that is:

$$(a^{2i+1}bc^{2i-1}|i \ge 1, a^{2s+1}bc^{2s-1}|s \ge 1) \xrightarrow{R_1} (a^{2(i+s)}bc^{2(i+s)}) \longrightarrow \{a^{2k}bc^{2k}|k \ge 2\}.$$

We can also have:

$$(a^{2k}bc^{2k}|k \ge 2, a^{2i+1}bc^{2i-1}|i \ge 1) \xrightarrow{R_1} (a^{2(k+i)-1}bc^{2(k+i)+1}) \longrightarrow \{a^{2p-1}bc^{2p+1}|p \ge 3\}.$$

Or :

$$(a^{2i+1}bc^{2i-1}|i\geq 1, a^{2k}bc^{2k}|k\geq 2)\xrightarrow{R_1}(a^{2(i+k)+1}bc^{2(i+k)-1}) \longrightarrow \{a^{2p+1}bc^{2p-1}|p\geq 3\}\subset \{a^{2i+1}bc^{2i-1}|i\geq 1\}.$$

Or:

$$(a^{2k}bc^{2k}|k \ge 2, a^{2p-1}bc^{2p+1}|p \ge 3) \xrightarrow{R_1} (a^{2g+1}bc^{2g-1}) \subset \{a^{2i+1}bc^{2i-1}\}.$$

And so on

So after several tests, we conclude that the general form of theorems is as follows: $\{a^{2i+1}bc^{2i-1}|i\geq 1\}\cup\{a^{2k}bc^{2k}|k\geq 2\}\cup\{a^{2p-1}bc^{2p+1}|p\geq 3\}\cup\{a^{2r+2}bc^{2r-2}|p\geq 4\}\cup\{a^{2r-2}bc^{2r+2}|p\geq 4\},...$ etc.