SERIE 2

EXERCISE 01 : Give the 8-bit binary representations using the three representations (Sign & Absolute Value, One's complement, Two's complement) of the following numbers:

EXERCISE 02: Find the relative numbers corresponding to these representations in 2's complement:

1/100101 2/001010 3/100001 4/010101 5/111111

EXERCISE 03: Perform the following operations in 5-bit, two's complement and specify the overflow cases, then convert the operation into decimal form

11001 10001 11101 11101 01101 11101
$$\frac{1}{1}$$
10101 $\frac{2}{0}$ 10101 $\frac{3}{1}$ 10001 $\frac{4}{0}$ 1001 $\frac{5}{0}$ 100101 $\frac{6}{1}$ 11001

EXERCISE 04: Perform the following operations in two's complement on 6 bits and specify the cases of overflow

$$+10$$
 -11 $+12$ -21
 $1/\pm 09$ $2/\pm 07$ $3/=12$ $4/=17$
 $+13$ -19 $+15$ -26
 $5/\pm 23$ $6/=24$ $7/\pm 18$ $8/\pm 15$

EXERCISE 05

- Find the IEEE 754 single-precision representation of the numbers: : $(-13.25)_{10}$ (+37.125)₁₀
- ➤ Find the 32-bit single-precision representation of (10.75)₁₀ (-19.25)₁₀ knowing that the exponent is represented on 7 bits instead of 8 bits.

EXERCISE 06: Find the floating-point number with the following IEEE754 representation:

- > (41DC0000)_H
- \triangleright (BEE00000)_H