CHAPITRE 1	
ĺ	
	ALGERRAIC STRUCTURES

1.1 Internal Composition Law

Definition 1.1. Let E be a non-empty set. An internal composition law **(ICL)** on E is any mapping * from $E \times E$ to E, i.e.

$$*: E \times E \longrightarrow E$$

 $(x, y) \longmapsto x * y$

Remark 1.1. The operation "*" is an internal composition law on E if and only if:

$$\forall x, y \in E, \ x * y \in E.$$

- **Example 1.1.** 1. We know that for all $x, y \in \mathbb{N}$: $x + y \in \mathbb{N}$ and $x \cdot y \in \mathbb{N}$. Therefore, the usual addition "+" and the usual multiplication "." are internal composition laws on \mathbb{N} . It is clear that the usual addition "+" and the usual multiplication "." are internal composition laws on $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} .
 - 2. The usual subtraction "-" is an internal composition law on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} , but not on \mathbb{N} .
 - 3. The usual addition "+" on the set $B = \{0,1\}$ is not an internal composition law. Indeed:

(x,y)	(0,0)	(0,1)	(1,0)	(1,1)
x + y	0	1	1	$2 \notin B$

The usual multiplication "." on the set $B = \{0,1\}$ is an internal composition law. Indeed:

(x, y)	(0,0)	(0,1)	(1,0)	(1,1)
$x \cdot y$	0	0	0	1

4. The intersection \cap is an internal composition law on the set $\mathcal{P}(E)$ of all subsets of E.

Definition 1.2. Let * be an internal composition law on a non-empty set E. Then:

1. The law * is said to be commutative if:

$$\forall x, y \in E, \ x * y = y * x$$

2. The law * is said to be associative if:

$$\forall x, y, z \in E, \ (x * y) * z = x * (y * z)$$

3. The law * admits a neutral element if :

$$\exists e \in E, \ \forall x \in E, \ (x * e = x) \land (e * x = x)$$

The element e (if it exists) is called the neutral element of *.

4. When * admits a neutral element e, an element of E is said to be **invertible** with respect to * if:

$$\forall x \in E, \ \exists x' \in E, \ (x * x' = e) \land (x' * x = e)$$

The element x' (if it exists) is called the inverse (or symmetric) of x and is denoted by x^{-1} .

Example 1.2. 1. The usual addition "+" on \mathbb{R} :

- $\forall x, y \in \mathbb{R}, x + y = y + x$, hence the usual addition "+" is commutative on \mathbb{R} .
- $\forall x, y, z \in \mathbb{R}$, x + (y + z) = (x + y) + z, hence the usual addition "+" is associative on \mathbb{R} .
- $\exists e = 0 \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ (x + 0 = x) \land (0 + x = x), \ hence \ 0 \ is the neutral element for "+" on <math>\mathbb{R}$.
- $\forall x \in \mathbb{R}, \ \exists x' = -x \in \mathbb{R}, \ (x + (-x) = 0) \land ((-x) + x = 0), \ hence \ every \ element \ of \ \mathbb{R}$ is invertible with respect to "+".
- 2. The usual multiplication "." on \mathbb{R} :
 - $-\forall x,y\in\mathbb{R},\ x\cdot y=y\cdot x,\ hence\ the\ usual\ multiplication\ "."\ is\ commutative\ on\ \mathbb{R}.$
 - We know that $\forall x, y, z \in \mathbb{R}$, $x \cdot (y \cdot z) = (x \cdot y) \cdot z$, hence the usual multiplication "." is associative on \mathbb{R} .
 - $\exists e = 1 \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ (x \cdot 1 = x) \land (1 \cdot x = x), \ hence \ 1 \ is the neutral element for "." on <math>\mathbb{R}$.
 - For x = 0, we cannot find $x' \in \mathbb{R}$ such that $0 \cdot x' = 1$; hence x = 0 is not invertible with respect to the usual multiplication "." That is $\exists x = 0 \in \mathbb{R}$, $\forall x' \in \mathbb{R}$, $(x \cdot x' \neq 1) \lor (x' \cdot x \neq 1)$, therefore not all elements of \mathbb{R} are invertible with respect to ".".

1.2 Group Structure

Definition 1.3. Let * be an internal composition law on a non-empty set G. We say that (G,*) is a group if * is associative, admits a neutral element e, and every element of G is invertible with respect to *.

If, in addition, * is commutative, the group is said to be commutative or abelian.

Example 1.3. 1. The structures $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, and $(\mathbb{C}, +)$ are commutative groups.

- 2. The structures (\mathbb{Q},\cdot) , (\mathbb{R},\cdot) , and (\mathbb{C},\cdot) are not groups (because 0 has no inverse for the usual multiplication ".").
- 3. The structures (\mathbb{Q}^*,\cdot) , (\mathbb{R}^*,\cdot) , and (\mathbb{C}^*,\cdot) are commutative groups.
- 4. The structures $(\mathbb{N}, +)$, (\mathbb{N}, \cdot) , and (\mathbb{Z}, \cdot) are not groups.

1.2.1 Subgroup

Definition 1.4. Let (G, *) be a group and H a subset of G. We say that (H, *) is a **subgroup** of (G, *) if (H, *) is itself a group for the operation * restricted to H.

Proposition 1.1. Let H be a subset of a group (G, *) with neutral element e. Then,

$$(H,*) \ is \ a \ subgroup \ of \ (G,*) \ \iff \ \left\{ \begin{array}{l} e \in H \\ \forall x,y \in H, \ x * y^{-1} \in H \end{array} \right.$$

 $D\'{e}monstration.$

a) Suppose that (H,*) is a subgroup of (G,*), and let us show that :

$$\begin{cases} e \in H \\ \forall x, y \in H : x * y^{-1} \in H \end{cases}$$

Let $x, y \in H$. We have $x, y^{-1} \in H$ (because every element of H has an inverse with respect to * in H), and $x * y^{-1} \in H$ (because * is an internal operation on H).

Therefore, $\forall x, y \in H : x * y^{-1} \in H$.

Also, $H \neq \emptyset$, so there exists $x_0 \in G$ with $x_0 \in H$, hence $x_0 * x_0^{-1} \in H$. That is, $e \in H$.

b) Suppose that:

$$\begin{cases} e \in H \\ \forall x, y \in H : x * y^{-1} \in H \end{cases}$$

and let us show that (H, *) is a subgroup of (G, *).

Since $e \in H$, we have $H \neq \emptyset$. Moreover, since $\forall x \in G : x * e = x = e * x$, in particular $\forall x \in H : x * e = x = e * x$. That is, e is the identity element of * in H.

Let $y \in H$ and $x = e \in H$. Then $x * y^{-1} = e * y^{-1} = y^{-1} \in H$, hence $\forall y \in H : y^{-1} \in H$. That is, every element of H has an inverse with respect to * in H.

Let $x, y \in H$. Then $x, y^{-1} \in H$, hence $x * (y^{-1})^{-1} = x * y \in H$. Therefore, $\forall x, y \in H$: $x * y \in H$. That is, * is a closed operation on H.

Let $x, y, z \in H$. Then $x, y, z \in G$, so (x * y) * z = x * (y * z), and therefore $\forall x, y, z \in H : (x * y) * z = x * (y * z)$. That is, * is associative in H.

Thus, (H, *) satisfies all the group axioms, and therefore it is indeed a subgroup of (G, *).

Example 1.4. 1. \mathbb{Z} is a We have:

1. \mathbb{Z} is a subset of \mathbb{Q} and $(\mathbb{Q}, +)$ is a group.

 $\begin{cases} 0 \in \mathbb{Z} \\ \forall x \in \mathbb{Z} \end{cases}$

$$\begin{cases} 0 \in \mathbb{Z} \\ \forall x, y \in \mathbb{Z} : x + (-y) \in \mathbb{Z}. \end{cases}$$

Therefore, $(\mathbb{Z}, +)$ is a subgroup of $(\mathbb{Q}, +)$.

Similarly, $(\mathbb{Q}, +)$ is a subgroup of $(\mathbb{R}, +)$ and of $(\mathbb{C}, +)$.

2. The unit circle $S = \{z \in \mathbb{C} \mid |z| = 1\}$ is a subset of \mathbb{C}^* , and (\mathbb{C}^*, \cdot) is a group. We have |1| = 1, therefore $1 \in S$. Let $z, z' \in S$. Then

$$|z \cdot (z')^{-1}| = \frac{|z|}{|z'|} = 1,$$

therefore $z \cdot (z')^{-1} \in S$. Thus,

$$\begin{cases} 1 \in S \\ \forall z, z' \in S : z \cdot (z')^{-1} \in S \end{cases}$$

and therefore (S, \cdot) is a subgroup of (\mathbb{C}^*, \cdot) .

1.2.2 Homomorphism, Endomorphism, Isomorphism, Automorphism

Definition 1.5. Let (G,*) and (G',Δ) be two groups, and let $f:G\to G'$ be a function. We say that:

1. f is a homomorphism from G to G' if

$$\forall x, y \in G: \quad f(x * y) = f(x) \Delta f(y).$$

- 2. f is an endomorphism of G if f is a homomorphism from G to G.
- 3. f is an isomorphism from G to G' if f is a bijective homomorphism.
- 4. f is an automorphism of G if f is a bijective endomorphism.

Example 1.5. 1. The function $f:(\mathbb{R},+)\to(\mathbb{R}^*,\times)$ defined by $f(x)=e^x$ is a homomorphism. Indeed,

$$\forall x, y \in \mathbb{R}: \quad f(x+y) = e^{x+y} = e^x \times e^y = f(x) \times f(y).$$

2. The function $g:(\mathbb{R}_+^*,\times)\to(\mathbb{R},+)$ defined by $g(x)=\ln x$ is an isomorphism, because

$$\forall x, y \in \mathbb{R}_+^* : \quad g(x \times y) = \ln(x \times y) = \ln(x) + \ln(y) = g(x) + g(y).$$

Moreover, g is bijective.

1.3 Ring Structure

In what follows, we use the internal operations + and \cdot (called addition and multiplication, respectively), whose neutral elements are denoted by 0 and 1, and the inverses of an element x are : for addition, -x, and for multiplication, x^{-1} .

Definition 1.6. 1) A set A equipped with two operations + and \cdot is called a ring if and only if:

- 1. (A, +) is an abelian group.
- 2. The operation "." is associative.
- 3. For all $x, y, z \in A$:

$$\begin{cases} x \cdot (y+z) = (x \cdot y) + (x \cdot z), \\ (y+z) \cdot x = (y \cdot x) + (z \cdot x), \end{cases}$$

(This condition is called the distributivity of "·" with respect to "+".)

- **Remark 1.2.** 1. If, moreover, the operation " \cdot " is commutative, then $(A, +, \cdot)$ is called a commutative ring.
 - 2. If, in addition, the operation " \cdot " admits a neutral element, then $(A, +, \cdot)$ is called a unital ring.
- **Example 1.6.** 1. We know that $(\mathbb{Z}, +)$ is an abelian group, and we know that the usual multiplication "·" is associative and distributive with respect to the usual addition "+" in \mathbb{Z} . Therefore, $(\mathbb{Z}, +, \cdot)$ is a ring.

Moreover, the second operation "·" is commutative and has 1 as a neutral element, so $(\mathbb{Z}, +, \cdot)$ is a commutative and unital ring.

2. Similarly, $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, and $(\mathbb{C}, +, \cdot)$ are unital, commutative rings.

1.3.1 Some computation rules

Proposition 1.2. Let $(A, +, \cdot)$ be a ring with neutral element 0. Then:

- 1. $\forall x \in A : x \cdot 0 = 0 = 0 \cdot x$
- 2. $\forall x, y \in A$: $(-x) \cdot y = -(x \cdot y) = x \cdot (-y)$
- 3. $\forall x, y \in A : (-x) \cdot (-y) = x \cdot y$
- 4. If the ring has a unity 1, then $\forall x \in A : -x = (-1) \cdot x$.

1.3.2 Integral Domain

Definition 1.7. A ring $(A, +, \cdot)$ is called an integral domain if

$$\forall x, y \in A : (x \cdot y = 0 \Rightarrow (x = 0 \lor y = 0)).$$

Example 1.7. The structures $(\mathbb{Z}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, and $(\mathbb{C}, +, \cdot)$ are integral domains.

1.4 Field Structure

Definition 1.8. Let $(K, +, \cdot)$ be a unital ring. We say that $(K, +, \cdot)$ is a field if:

- 1. $1_K \neq 0_K$
- 2. Every element of $K \setminus \{0_K\}$ is invertible with respect to the operation "·". The field is called commutative if the operation "·" is commutative.

Example 1.8. 1. The structures $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, and $(\mathbb{C}, +, \cdot)$ are commutative fields.

2. The structure $(\mathbb{Z}, +, \cdot)$ is not a field, because the only invertible elements in \mathbb{Z}^* with respect to usual multiplication are 1 and -1.