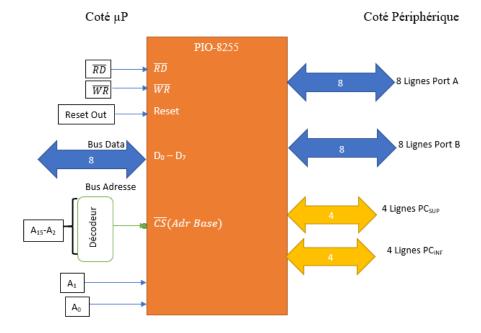

Chapitre 5

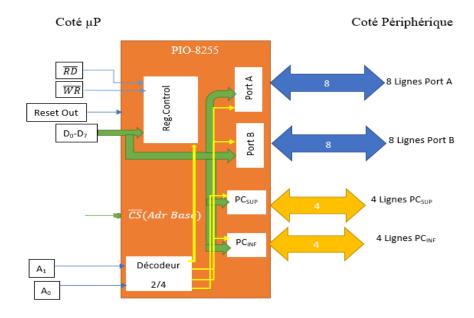
Interface parallèle d'une carte à µP « Le PIO-8255 »

Pour dialoguer avec ses périphériques, l'unité centrale fait appel à trois principes:

- **1.** Les échanges programmés : C'est le programme qui ordonne un accès à un élément périphérique quelconque.
- **2.** *Les interruptions :* L'échange peut désormais avoir lieu de manière aléatoire, à n'importe quel instant, uniquement lorsque le périphérique le demande.
- **3.** Le DMA: ou accès direct à la mémoire («Direct Memory Access»). Ce mode d'échange privilégie la vitesse.


Chacune de ces méthodes offre des avantages et des inconvénients. C'est pourquoi elles sont complémentaires et non concurrentes.

I. Organisation du PIO-8255(parallèle Input-Out put) :


- Le PIO-8255 est un interface parallèle programmable, il reçoit des données et les transmet du/vers le μP au du/vers un ou plusieurs périphériques sur des bue de 8bits (de niveau TTL). Il dispose de 3 portes d'Entrées-Sorties sur 8 bits. Il est programmable ce qui signifie qu'on peut choisir l'état de chaque Port (en entrée/Sortie). Il dispose de 3 modes de fonctionnement :
 - <u>Mode 0</u>: simple très utiliser.
 - <u>Mode 1 : l'état des ports peut changer durant le programme.</u>
 - <u>Mode 2</u>: exploitation des Interruption des ports dans la programmation.

II. Structure externe du PIO-8255:

- Le Bus de données 8 bits de niveau TTL relié aux bus donnés du PIO-8255.
- Les lignes d'adresses sont connectées à un décodeur dans l'une des sorties est connectée à l'entrée \overline{CS} (Chip Select) pour fixer l'adresse de base du PIO (exemple : le cas du SDK : PIO-0 adr_base=40 et PIO-1 adr_base=50).
- Les lignes A₀ et A₁ sont utilisées pour sélectionner les registres et Port internes du PIO.
- Les lignes de contrôle : (\overline{R} , \overline{W} et reset out) : sont utilisées pour synchroniser le PIO avec le μ P est connecté au reset du PIO pour assurer la réinitialisation du système.

III. Structure Interne du PIO-8255:

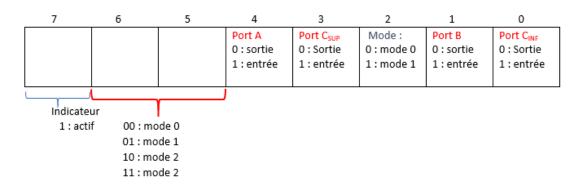
Le PIO-8255 contient :

- Le registre Port A : 8 bits de niveau TTL bidirectionnel programmable.
- Le registre Port B : 8 bits de niveau TTL bidirectionnel programmable.
- Le registre Port C : divisé en 2 ports : C_{INF} et C_{SUP} de niveau TTL de 4 bits longueur programmable indépendamment.

- Un registre de contrôle : qui permet de programmer le mode de fonctionnement du PIO et le sens de transfert de différents registres(Port A, B, C_{INF} et C_{SUP})
- Un décodeur d'adresse (2/4) : qui permet de sélectionner les registres internes du PIO selon le tableau suivant :

• Exercice:

- Nous voulons automatiser une machine industrielle qui contient : 3 capteurs analogiques, 2 actionneurs analogiques, 18 capteurs TOR (Tout Ou Rien) et 8 actionneurs TOR.
- Donner un synoptique de la carte à μP.


1. Tableau d'adressage des registres internes du PIO 8255 :

Type:	$\mathbf{A_1}$	$\mathbf{A_0}$		$\overline{R}\overline{w}$	<u>CS</u>	Opératio	n	Adresse de Base : Adr
Entrée	0	0	0	1	0	Port A	Bus Data	Adr : Adresse Port A
	0	1	0	1	0	Port B	Bus Data	Adr+1 : Adresse Port B
	1	0	0	1	0	Port C	Bus Data	Adr+2 : Adresse Port C
	0	0	1	0	0	Bus Data	Port A	Adr
Ecriture	0	1	1	0	0	Bus Data	Port B	Adr+1
	1	0	1	0	0	Bus Data	Port C	Adr+2
	X	X	X	X	1	Bus de donnée relié a	u PIO à 3 états	
Autre	1	1	0	1	0	Illégal		
	X	X	1	1	0	Bus de donnée à 3 éta	ats	

2. Adressage des registres Internes :

Adresse Base	Registres	Exp:SDK	Exp: SDK 8085		
		PIO-0	PIO-1		
Adr	Port A	40	50		
Adr+1	Port B	41	51		
Adr+2	Port C	42	52		
Adr+3	Registre Contrôle	43	53		

3. Programmation du registre de contrôle « RC » :

Exp1: programmer tous de PIO-1 du SDK-8085 en sortie:

MVI A, 80

OUT 53

Exp2 : programmer les 3 ports du PIO-1 en entrée :

MVI A, 9B OUT 53

Exp3 : lire l'état du port B et écrire l'état sur Port A du PIO-1 :

MVI A,82 OUT 53 Etiq: IN 51 OUT 50 LXI D, 0400 CALL OFFA JMP Etiq RST1

• Exercice:

- Nous voulons réaliser un jeu de lumière sur les 8 LEDS de SDK-8085 :
- Les LEDS clignotent entre 00 et FF pendant 10 s puis clignotent entre AA et 55 pendant 10 autres seconde et le programme est bouclé. Avec une fréquence de 500ms.

• Solution:

Adresse:	Code Machine:	Assembleur:
7000	3E 82	MVI A, 82
7003	D3 53	OUT 53
7005	06 14	Etiq: MVI B, 14
7007	3E 00	Etiq1 : MVI A, 00
7009	D3 50	OUT 50
700B	11 00 01	LXI D, 0100
700E	CD FA 0F	CALL 0FFA
7011	3E FF	MVI A, FF
7013	D3 50	OUT 50
7015	11 00 01	LXI D, 0100
7018	CD FA 0F	CALL 0FFA
701B	05	DCR B
701C	C2 07 70	JNZ Etiq1
701F	06 14	MVI B, 14
7021	3E AA	Etiq2: MVI A, AA
7023	D3 50	OUT 50
7024	11 00 01	LXI D, 0100
7027	CD FA 0F	CALL 0FFA
702A	3E 55	MVI A, 55
702C	D3 50	OUT 50
702E	11 00 01	LXI D, 0100

7031	CD FA 0F	CALL 0FFA
7034	05	DCR B
7035	C2 21 70	JNZ Etiq2
7038	C3 05 70	JMP Etiq