2020/2021

Ahmed Boulemden

Exercice Series N°1

Exercice 1: Euclidean Distance

In pattern recognition, the Euclidean distance is calculated between two vectors $X = x_i$ and $Y=y_i$ with i = 1,...,N as follows

$$d(x,y) = \sqrt{(x_i - y_i)^2}$$

write a script in R for the Euclidean distance calculation of two vectors X and Y.

Exercice 2: Binary Similarity measures

Binary similarity measures are a set of similarity measures calculated between binary vectors. These similarities employ a 2*2 contingency matrix with OTU (Operational Taxonomic Units). In a binary vector, 1 denotes the presence of the attribute and 0 denotes its absence. The OTU based matrix is calculated as follow for the Vectors $X_i Y_j$

i	1 (Presence)	0 (Absence)	Sum
1 (Presence)	$a = i \bullet j$	$b = \overline{i} \bullet j$	a+b
0 (Absence)	$c = i \bullet \overline{j}$	$d = \overline{i} \bullet \overline{j}$	c+d
Sum	a+c	b+d	n=a+b+c+d

Write a script in R to calculate the matrix and based on it the following two binary similarity measures

$$S_{JACCARD} = \frac{a}{a+b+c} \qquad \qquad S_{ROGER \& TANIMOTO} = \frac{a+d}{a+2(b+c)+d}$$

Exercice 3: Cooccurrence matrix of a grey-level image

A grey-level image is an m*n matrix of integer values within the range of [0,255]. Cooccurrence matrix is a square matrix of 256*256 used to calculate several image features such as texture statistical features. Each element x_{ij} of the cooccurrence matrix present the apparition frequency of i^{th} grey level in adjacence with the j^{th} one for a certain direction θ . The following example illustrates the calculation of matrix for a 4*4 image with $\theta = 0^{\circ}$.

0	0	0	1	Г	6	2	1	0	1
0	0	1	1	<i>P</i> _{0°, 1} =	2	2	0	0	
0	2	2	3		1	0	4	2	
2	2	3	3		0	0	2	2	

Write a script in R to calculate the cooccurrence matrix