
COMPUTING PRACTICES

Edgar H. Sibley
Panel Editor

The state of the art in data compression is arithmetic coding, not the better-
known Huffman method. Arithmetic coding gives greater compression, is
faster for adaptive models, and clearly separates the model from the channel
encoding.

ARITHMETIC CODING FOR
DATA COIUPRESSION

IAN H. WIllEN, RADFORD M. NEAL, and JOHN G. CLEARY

Arithmetic coding is superior in most respects to the
better-known Huffman [lo] method. It represents in-
formation at least as compactly-sometimes consid-
erably more so. Its performance is optimal without
the need for blocking of input data. It encourages a
clear separation between the model for representing
data and the encoding of information with respect to
that model. It accommodates adaptive models easily
and is computationally efficient. Yet many authors
and practitioners seem unaware of the technique.
Indeed there is a widespread belief that Huffman
coding cannot be improved upon.

We aim to rectify this situation by presenting an
accessible implementation of arithmetic coding and
by detailing its performance characteristics. We start
by briefly reviewing basic concepts of data compres-
sion and introducing the model-based approach that
underlies most modern techniques. We then outline
the idea of arithmetic coding using a simple exam-
ple, before presenting programs for both encoding
and decoding. In these programs the model occupies
a separate module so that different models can easily
be used. Next we discuss the construction of fixed
and adaptive models and detail the compression
efficiency and execution time of the programs,
including the effect of different arithmetic word
lengths on compression efficiency. Finally, we out-
line a few applications where arithmetic coding is
appropriate.

Financial support for this work has been provided by the Natural Sciences
and E@neering Research Council of Canada.

UNIX is a registered trademark of AT&T Bell Laboratories.

0 1987 ACM OOOl-0782/87/OtiOO-0520 750

DATA COMPRESSION
To many, data compression conjures up an assort-
ment of ad hoc techniques such as conversion of
spaces in text to tabs, creation of special codes for
common words, or run-length coding of picture data
(e.g., see [8]). This contrasts with the more modern
model-based paradigm for coding, where, from an
input string of symbols and a model, an encoded string
is produced that is (usually) a compressed version of
the input. The decoder, which must have access to
the same model, regenerates the exact input string
from the encoded string. Input symbols are drawn
from some well-defined set such as the ASCII or
binary alphabets; the encoded string is a plain se-
quence of bits. The model is a way of calculating, in
any given context, the distribution of probabilities
for the next input symbol. It must be possible for the
decoder to produce exactly the same probability dis-
tribution in the same context. Compression is
achieved by transmitting the more probable symbols
in fewer bits than the less probable ones.

For example, the model may assign a predeter-
mined probability to each symbol in the ASCII
alphabet. No context is involved. These probabilities
can be determined by counting frequencies in repre-
sentative samples of text to be transmitted. Such a
fixed model is communicated in advance to both en-
coder and decoder, after which it is used for many
messages.

Alternatively, the probabilities that an adaptive
model assigns may change as each symbol is trans-
mitted, based on the symbol frequencies seen so far
in the message. There is no need for a representative

520 Communications of the ACM June 1987 Volume 30 Number 6

Computing Practices

sample of text, because each message is treated as if Huffman coding were substituted. Nevertheless,
an independent unit, starting from scratch. The en- since our topic is coding and not modeling, the illus-
coder’s model changes with each symbol transmit- trations in this article all employ simple models.
ted, and the decoder’s changes with each symbol Even so, as we shall see, Huffman coding is inferior
received, in sympathy. to arithmetic coding.

More complex models can provide more accurate
probabilistic predictions and hence achieve greater
compression. For example, several characters of pre-
vious context could condition the next-symbol prob-
ability. Such methods have enabled mixed-case Eng-
lish text to be encoded in around 2.2 bits/character
with two quite different kinds of model [4, 61. Tech-
niques that do not separate modeling from coding
so distinctly, like that of Ziv and Lempel (231, do
not seem to show such great potential for compres-
sion, although they may be appropriate when the
aim is raw speed rather than compression per-
formance [22].

The basic concept of arithmetic coding can be
traced back to Elias in the early 1960s (see [l,
pp. 61-621). Practical techniques were first intro-
duced by Rissanen [16] and Pasco [15], and de-
veloped further by Rissanen [17]. Details of the
implementation presented here have not appeared
in the literature before; Rubin [2O] is closest to our
approach. The reader interested in the broader class
of arithmetic codes is referred to [18]; a tutorial is
available in [l3]. Despite these publications, the
method is not widely known. A number of recent
books and papers on data compression mention it
only in passing, or not at all.

The effectiveness of any model can be measured
by the entropy of the message with respect to it,
usually expressed in bits/symbol. Shannon’s funda-
mental theorem of coding states that, given messages
randomly generated from a model, it is impossible to
encode them into less bits (on average) than the en-
tropy of that model [21].

A message can be coded with respect to a model
using either Huffman or arithmetic coding. The for-
mer method is frequently advocated as the best pos-
sible technique for reducing the encoded data rate.
It is not. Given that each symbol in the alphabet
must translate into an integral number of bits in the
encoding, Huffman coding indeed achieves “mini-
mum redundancy.” In other words, it performs opti-
mally if all symbol probabilities are integral powers
of %. But this is not normally the case in practice;
indeed, Huffman coding can take up to one extra bit
per symbol. The worst case is realized by a source
in which one symbol has probability approaching
unity. Symbols emanating from such a source con-
vey negligible information on average, but require at
least one bit to transmit [7]. Arithmetic coding dis-
penses with the restriction that each symbol must
translate into an integral number of bits, thereby
coding more efficiently. It actually achieves the the-
oretical entropy bound to compression efficiency for
any source, including the one just mentioned.

THE IDEA OF ARITHMETIC CODING
In arithmetic coding, a message is represented by an
interval of real numbers between 0 and 1. As the
message becomes longer, the interval needed’to rep-
resent it becomes smaller, and the number of bits
needed to specify that interval grows. Successive
symbols of the message reduce the size of the inter-
val in accordance with the symbol probabilities gen-
erated by the model. The more likely symbols re-
duce the range by less than the unlikely symbols
and hence add fewer bits to the message.

Before anything is transmitted, the range for the
message is the entire interval [0, l), denoting the
half-open interval 0 5 x < 1. As each symbol is
processed, the range is narrowed to that portion of it
allocated to the symbol. For example, suppose the
alphabet is (a, e, i, O, u, !I, and a fixed model is used
with probabilities shown in Table I. Imagine trans-

TABLE I. Example Fixed Model for Alphabet (a, e, i, o, u, !)

Symbol Probability Range

.2 LO, 0.2)

.3 [0.2, 0.5)

.l [0.5, 0.6)

.2 [0.6,0.8)

.l [0.8, 0.9)

.l [0.9, 1.0)
In general, sophisticated models expose the defi-

ciencies of Huffman coding more starkly than simple
ones. This is because they more often predict sym-
bols with probabilities close to one, the worst case
for Huffman coding. For example, the techniques
mentioned above that code English text in 2.2 bits/
character both use arithmetic coding as the final
step, and performance would be impacted severely

mitting the message eaii!. Initially, both encoder
and decoder know that the range is [0, 1). After
seeing the first symbol, e, the encoder narrows it to
[0.2, 04, the range the model allocates to this sym-
bol. The second symbol, a, will narrow this new
range to the first one-fifth of it, since a has been

June 1987 Volume 30 Number 6 Communications of the ACM 521

Computing Practices

allocated [0, 0.2). This produces [O.Z, 0.26), since the Figure la. The second symbol scales it again into the
previous range was 0.3 units long and one-fifth of range [0.2, 0.26). But the picture cannot be contin-
that is 0.06. The next symbol, i, is allocated [0.5, 0.6), ued in this way without a magnifying glass! Conse-
which when applied to [0.2, 0.26) gives the smaller quently, Figure lb shows the ranges expanded to
range [0.23, 0.236). Proceeding in this way, the en- full height at every stage and marked with a scale
coded message builds up as follows: that gives the endpoints as numbers.

Initially 1)
After seeing e ;::2, 0.5)

a p.2, 0.26)
i [0.23, 0.236)
i [0.233, 0.2336)
! [0.23354, 0.2336)

Figure 1 shows another representation of the en-
coding process. The vertical bars with ticks repre-
sent the symbol probabilities stipulated by the
model. After the first symbol has been processed, the
model is scaled into the range [0.2, 0.5), as shown in

Suppose all the decoder knows about the message
is the final range, [0.23354, 0.2336). It can -immedi-
ately deduce that the first character was e! since the
range lies entirely within the space the model of
Table I allocates for e. Now it can simulate the oper-
ation of the encoder:

Initially P, 1)
After seeing e [0.2, 0.5)

This makes it clear that the second character is a,
since this will produce the range

After seeing a [0.2, 0.26),

which entirely encloses the given range [0.23354,
0.2336). Proceeding like this, the decoder can iden-
tify the whole message.

After
seeing Nothing e a ’ !

U

0

i

0 ri e

a

3

FIGURE la. Representation of the Arithmetic Coding Process

After
seeing Nothing e a

1

i

!
u

0

i

e

a

0

0.5

0.2 i
a

0.26

0.2 i

It is not really necessary for the decoder to know
both ends of the range produced by the encoder.
Instead, a single number within the range--for ex-
ample, 0.23355-will suffice. (Other numbers, like
0.23354, 0.23357, or even 0.23354321, would do just
as well.) However, the decoder will face the problem
of detecting the end of the message, to determine
when to stop decoding. After all, the single number
0.0 could represent any of a, aa, aaa, aaaa, To
resolve the ambiguity, we ensure that each message
ends with a special EOF symbol known to both en-
coder and decoder. For the alphabet of Table I, ! will
be used to terminate messages, and only to termi-

!
u

0

/
i

e

a
\

i i !

!
U

/

0

i

e

\
a

FIGURE lb. Representation of the Arithmetic Coding
Process with the interval Scaled Up at Each Stage

522 Communications of the ACM June 1987 Volume 30 Number 6

Computing Practices

/* ARITHMETIC ENCODING ALGORITHM. */

/* Call encode-symbol repeatedly for each symbol in the message. */
/* Ensure that a distinguished "terminator" symbol is encoded last, then */
/* transmit any value in the range [low, high). */

encode-symbol(symbo1, cum-freq)
range = high - low
high = low f range*cum-freq[symbol-11
low = low f range*cum-freq(symbol1

/* ARITHMETIC DECODING ALGORITHM. */

/* "Value" is the number that has been received. */
/* Continue calling decode-symbol until the terminator symbol is returned. */

decode-symbol(cum-freq)
find symbol such that

cum-freq[symbol] <= (value-low)/(high-low) < cum-freqrsymbol-11
/* This ensures that value lies within the new l /
;* (low, high) range that will be calculated by */
/* the following lines of code. */

range = high - low
high = low t range*cum-freq[symbol-11
1OW = low t range*cum-freq[symbol]
return symbol

FIGURE 2. Pseudocode for the Encoding and Decoding Procedures

nate messages. When the decoder sees this symbol,
it stops decoding.

Relative to the fixed model of Table I, the entropy
of the five-symbol message eaii! is

-log 0.3 - log 0.2 - log 0.1 - log 0.1 - log 0.1

= -log 0.00006 = 4.22

(using base 10, since the above encoding was per-
formed in decimal). This explains why it takes five
decimal digits to encode the message. In fact, the
size of the final range is 0.2336 - 0.23354 = 0.00006,
and the entropy is the negative logarithm of this
figure. Of course, we normally work in binary,
transmitting binary digits and measuring entropy
in bits.

Five decimal digits seems a lot to encode a mes-
sage comprising four vowels! It is perhaps unfortu-
nate that our example ended up by expanding
rather than compressing. Needless to say, however,
different models will give different entropies. The
best single-character model of the message eaii! is
the set of symbol frequencies (e(O.2), a(0.2), i(O.4),
!(0.2)), which gives an entropy of 2.89 decimal digits.
Using this model the encoding would be only three
digits long. Moreover, as noted earlier, more sophis-
ticated models give much better performance
in general.

A PROGRAM FOR ARITHMETIC CODING
Figure 2 shows a pseudocode fragment that summa-
rizes the encoding and decoding procedures devel-
oped in the last section. Symbols are numbered, 1, 2,
3 . . . The frequency range for the ith symbol is
from cum-freq[i] to cum-freq[i - 11. As i decreases,
cum-freq[i] increases, and cum-freq[O] = 1. (The
reason for this “backwards” convention is that
cum-freq[O] will later contain a normalizing factor,
and it will be convenient to have it begin the array.]
The “current interval” is [Zozu, high), and for both
encoding and decoding, this should be initialized
to [O, 1).

Unfortunately, Figure 2 is overly simplistic. In
practice, there are several factors that complicate
both encoding and decoding:

Incremental transmission and reception. The encode
algorithm as described does not transmit anything
until the entire message has been encoded; neither
does the decode algorithm begin decoding until it
has received the complete transmission. In most
applications an incremental mode of operation is
necessary.

The desire to use integer arithmetic. The precision
required to represent the [low, high) interval grows
with the length of the message. Incremental opera-
tion will help overcome this, but the potential for

]une 1987 Volume 30 Number 6 Communications of the ACM 523

Computing Practices

overflow and underflow must still be examined
carefully.

Representing the model so thnt it can be consulted
efficiently. The representation used for the model
should minimize the time required for the decode
algorithm to identify the next symbol. Moreover,
an adaptive model should be organized to minimize
the time-consuming task of maintaining cumulative
frequencies.

arithmetic-coding-h

Figure 3 shows working code, in C, for arithmetic
encoding and decoding. It is considerably lmore de-
tailed than the bare-bones sketch of Figure Z! Imple-
mentations of two different models are given in
Figure 4; the Figure 3 code can use either one.

The remainder of this section examines the code
of Figure 3 more closely, and includes a proof that
decoding is still correct in the integer implementa-
tion and a review of constraints on word lengths in
the program.

1 /' DECLARATIONS USED FOR ARITHMETIC ENCODING AND DECODING l /
2
3
4 /* SIZE OF ARITHMETIC CODE VALUES. l /
5
6 #define Code-value-bits 16 /* Number of bits in a code value l /
7 typedef long code-value: /* Type of an arithmetic code value l /
a
9 fdefine Top-value (((long)l<<Code_value_blts)-1) /* Largest code value l /

10
11
12 /' HALF AND QUARTER POINTS IN THE CODE VALUE RANGE. l /
13
14 *define First-qtr (Top-value/ltl) /* Point after first quarter l /
15 #define Half (Z'First-qtr) /* Point after first half "/
:6 Idefine Third-qtr (3’Firat-qtr) /* Point after third quarter l /

mode1.h

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

524 Communicationso~ the ACM June 1987 Volume 30 Number 6

/' INTERFACE TO THE MODEL. '/

/' THE SET OF SYMBOLS THAT MAY BE ENCODED. l /

#define No-of-chars 256 /* Number of character symbols '/
#define EOF-symbol (No-of-charetl) /* Index of EOF symbol '/

#define No-of-symbols (No-of-charstll /* Total number of symbols */

/' TRANSLATION TABLES BETWEEN CHARACTERS AND SYMBOL INDEXES. l /

int char-to-index[No-of-chars]; /* To index from character '/
unsigned char index_to_char[No_of_symbols+l]: /* To character from index l /

/* CUMULATIVE FREQUENCY TABLE. */

Idefine Max-frequency 16383

int cum_frsq[No_of_symbols+l];

/* Maximum allowed frequency count l /
/* 2a14 - 1 l /
/* Cumulative symbol frequencies l /

FIGURE 3. C Implementation of Arithmetic Encoding and Decoding

Computing Practices

encode.c

39
40
41
42
43
44
45
46
47
40
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
17
78
79
80
Bl
82
83
84
85
86
81
88
a9
90
91
92
93
94

/' MAIN PROGRAM FOR ENCODING. l /

#include <stdlo.h>
#include "mode1.h"

main0
1 startmodel~):

start-outputlng-bitsO;
start-encodingo;
for (::I (

int ch; lnt symbol;
ch - getc(stdin);
If (ch--EOF) break;
symbol- char-to.-lndex[ch];
encode-symbol(symbol,cum-freq);
update-model(symbo1);

1
encode_symbol(EOF_~symbol,cum_freq);
done-encoding();
done-outputinebitso;
exit (0) :

arithmetic encode.c -

/* Set up other modules. l /

/' Loop through characters. l /

/* Read the next character. l /
/* Exit loop on end-of-file.*/
/* Translate to an index. l /
/* Encode that symbol. l /
/* Update the model. l /

/* Encode the EOF symbol. l /
/* Send the last few blts. l /

/* ARITHMETIC ENCODING ALGORITHM. */

finclude "arithmetic-cod1ng.h"

static vold bll-plus-follov(); /* Routine that follows ‘/

/' CURRENT STATE OF THE ENCODING. '/

static code value low, high; /* Ends of the current code region */
static long-bits-to-follow; /* Number of opposite bits to output after l /

/* the next bit. '/

/* START ENCODING A STREAM OF SYMBOLS. l /

start-encoding0
I low - 0;

hiah - Top-value;
bits to follow - 0;

1 --

/* Full code range. '/

/* No bits to follow next. l /

/* ENCODE A SYMBOL. l /

encode-symhoI(symbol,cum-freq)
int symbol: /* Symbol to encode '/
int cum-freql]: /* Cumulative symbol frequencies '/

I long range; /' Size of the current code region l /
range - (long) (high-low)+l;
high - low + /* Narrow the code region l /

(ranye'cum-freq[symbol-ll)/cum-freq[O)-1: /* to that allotted to this l /
low - low + /' symbol. l /

~ranpe*cum~freq(symbol))/cum~freq(O);

FIGURE 3. C Implementation of Arithmetic Encoding and Decoding (continued)

]une 1987 Volume 30 Number 6 Communications of the ACM 525

95

96
97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

for (:;I I
if (high<Half) I

bit~plus~follow(0);
I
else if (low>-Half) (

bit~plus~follow(1):
low -- Half:
high -* Half:

I
else if (low>-Flrst qtr

sc hiQh<ThirdIqtr) (
bits-to-foliow t* 1;
low -- First-qtr;
high -- First-qtr;

1
else break:
low * 2'low;
high * 2*hightl;

/' Loop to ouLput bits. '1

/* Output 0 if In low half. l /

/* Output 1 if in hiQh half.*/

/+ Subtract offset to top. */

/* Output an opposite bit l /
/. later if in middle half. ./

/* Subtract offset to middle'/

/+ Otherwise exit loop. '1

/* Scale up code range. l /

/' FINISH ENCODING THE STREAM. l /

done-encoding0
I bits-to-follow +* 1: /* Output two bits that '1

if (low<First-qtr) bit~plus~follow(0): /' Select the quarter that l /
else bit-plus-follow(l): /* the current code range l /

1 /* contains. '/

/* OUTPUT BITS PLUS FOLLOWING OPPOSITE BITS. l /

static void bitglus-foIlow(blt)
int bit:

f output-bitcbit);
while (bits-to-follow>O) i

output-bit (Ibit);
bits to-follow -* 1;

1 -

/* Output the bit. l /

/* Output bits-to-follow l /
/* opposfte bits. Set '/
/' bits-to-follow to zero. l /

526 Communications of the ACM]une 1987 Volume 30 Number 6

decode.c

/* MAIN PROGPAM FOR DECODING. */

#include <stdio.h>
(include "mode1.h"

main ()
I start-model 0 :

start-inpUtinQ-bitso;
start-decodingo:
for (;;) (

lnt ch: int symboi;
symbol - decode-symbolicurn-freq):
if (symbol**EOF symbol) break;
ch * lndex_to_c?;ar[symbolJ;
putc(ch,stdout):
update-model(symbo1);

1
exit. (0) ;

1

/* Set up other modules. '/

/* Loop through characters. '/

/* Decode next symbol. '/
/' Exit loop if EOF symbol. 'I
/* Translate to a character.*/
/' Write that character. '/
/* Update the model. l /

FIGURE 3. C Implementation of Arithmetic Encoding and Decoding (continued)

Computing Practices

155
156
157
158
159

160
161

162

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

arithmetic decode.c -

-- --

/* ARITHMETIC DECODING ALGORITHM. l /

#include “arithmetic-cod1ng.h”

/' CURRENT STATE OF THE DECODING. l /

static code value value;
static code:value low, high;

/* Currently-seen code value
/* Ends of current code replan

l /
‘/

/* START DECODING A STREAM OF SYMBOLS. '/

Start-deC”di”Q()

(lnt i:
value - 0;
for (1 - 1; I<-Code-value-bits; it+) (

value - 2'value,lnput_bit();
1
low " 0:
hiQh - Top-value;

1

/* Input bits to flll the l /
/* code value. l /

/* Full code ranpe. l /

/* DECODE THE NEXT SYMBOL. l '/

lnt decode-symbol (cum-freq)
int cwn-freq[I; /* Cumulative symbol frequencies l /

! lO”Q ra”Qe; /* Size of current code region l /
int cum; /* Cumulative frequency calculated ‘/

int symbol: /* Symbol decoded l /
ra”Qe - (lO"Q)(hlQh-1oW)tl;
cum - /* Flnd cum freq for value. l /

(((lonQl(value-lou)tl)*cum~freq[O]-l)/ranQe:
for ~eyn!bol - 1; cum-fraq[symbolJ%wm; symboltt) ; /* Then find symbol. l /
hiQh - low t /* Narrow the code reQlon l /

(ranQe*cum-freq[symbol-ll)/cum-freq[O]-1; /* to that allotted to this l /
low - low t

(ra"Qe'cum~freq[symbo1])/cum~freq[O];
for I::1 (

if (hiQh<Half) I
/’ nothing l /

1
else If (low>-Half) (

value -- Half;
low -- Half:

hlQh -- Half;

else if (low>-First-qtr
‘L hiQh<Thlrd-qtr) (

value -- First-qtr;
low -- First-qtr;
high -- First-qtr;

1
else bxeak:

low - 2*1ow:
high - 2'hiQhtl:
value - 2*valuetlnput_bit():

1
relucn symbol;

t

/* symbol. l /

/* Loop to QOt rld of bits. l /

/’ Expand low half. '/

/* Expand hlph half. '/

/* Subtract offset to top. *I

/* Expand middle half. l /

/* Subtract offset to mIddlr*/

/* Otherwise exit loop. l /

/* Scale up code range. l /
/* Move in next input blt. l /

FIGURE 3. C Implementation of Arithmetic Encoding and Decoding (continued)

]une 1987 Volume 30 Number 6 Communications of the ACM 527

bit-input-c

216

217
218
219
220
221

222

223
224

225
226
227

228

229

230

231

232
233
234

235

236

237

238

239

240

241

242

243

244
245
246

247
248
249
250
251
252
253
254
255

256

/* BIT INPUT ROUTINES. "/

+include <stdlo.h>
flnclude "arithmetic-cod1ng.h"

‘/ /' THE BIT BUFFER.

static int buffer:
static lnt blts_to-go:
static lnt garbage-bits:

/* INITIALIZE BIT INPUT. */

St6rt_inpUting_blt6()

l bits-to-go - 0;
garbage-bits - 0:

1

/* Bits waiting to be input l /
/* Number of bits still in buffer l /
/* Number of bit6 past end-of-file ‘/

/* Buffer starts out with l /
/* no bits in it. l /

/* INPUT A BIT. l /

int input-bit0
(lnt t:

if (bits-to-go--O) 1 /* Read the next byte if no '/
buffer - getc(stdln): /* bit6 are left in buffer. *'/
if (buffer--EOF) (

garbage-bits t- 1; /* Return arbitrary bits*/

if (garbage~,blts>Code~value~blts-2) 1 /* after eof, but check l /

fprlntf(stderr,“Bad input flle\n’j; /* for too many such. l /
exit (-1);

)
1
bits-to-go - 8:

1
t - buffer&l;
buffer a>- 1;
bits-to-go -* I:
return t;

/* Return the next bit from l /
/* the bottom of the byte. l /

FIGURE 3. C Implementation of Arithmetic Encoding and Decoding (continued)

528 Communications of the ACM June 1987 Volume 30 Number 6

bit-output.c

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
215
276
277
270
279
200
281
282
283
204
285
286
287
288
209
290
291
292
293
294

/* BIT OUTPUT ROUTINES. '/

#include <stdlo.h>

/" THE BIT BUFFER. */

static int buffer: /* Bits buffered for output
static int bits-to-go; /* Number of bits free in buffer

/* INITIALIZE FOR BIT OUTPUT. l /

start_.outputing-..bits()
1 buffer - 0;

bitS_tO-QO- 8;
)

/* OUTPUT A BIT. l /

output-blt(bit)
lnt bit:

(buffer >>- 1;
if (bit) buffer I- 0x00;
bits-to-go -- 1;
if (bits-to-go--O) (

putc(buffer,stdout):
bits-to-go - 8;

t
t

l /
l /

/* FLUSH OUT THE LAST BITS. l /

done-outputlng-bits0
putc(buffer>>blts_to-go,stdout):

/* Buffer Is empty to start '/
/' with. l /

/* Dot bit In top of buffer.*/

/* Output buffer if It 1s l /
/' now full. l /

FIGURE 3. C Implementation of Arithmetic Encoding and Decoding (continued)

]une 1987 Volume 30 Number 6 Communications of the ACM 529

Computing Practices

fixed-model. c

1
2

4
5
6
7
a
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
40
49
50
51
52
53
54
55
56
57
58
59
60
61

/* THE FIXED SDDRCE MODEL l /

finclude 'mode1.h'

int freq[No-of-symbolstlj - (
0,
1. 1, 1. 1. 1, 1, 1, 1, 1, 1, 124, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

/* I l + $ t (1 l + / l /
1236, 1, 21, 9, 3, 1, 2:, 15, 2, 2, 2, 1, 7b, 19, 60, 1,

/'012 3 4 5 6 7 S 9:;C - > ?*/
15, 15, 8, 5, 4, 7, 5, 4, 4, 6, 3, 2, 1, 1, 1, 1,

/*@ A B C D E F C H I J K L M N O*/
1, 24, 15, 22, 12, 15, 10, 9, 16, 16, 8, 6, 12, 23, 13, 11,

/'P Q R S T U V W X Y Z [\ I .. l /
14, 1, 14, 26, 29, 6, 3, 11, 1, 3, 1, 1, 1, 1, 1, 5,

/* ' b
1, 49:. 85, 17;,

d
232, 74:,

f h i j k 1 m 0 l /
127, ll:, 293, 418, 6, 39, 250, 139, 42:, 446.

/*p q r 8 t x Y (I) - */
111, 5, 388, 375, 531, 159, 5:, 91, 12, 101, f. 2, 1, 2, 3. 1.

1. 1. 1, 1, 1, 1. 1, 1. 1. 1. 1, 1. 1. 1. 1, 1,
1, 1, 1, 1, 1, 1. 1, 1. 1, 1. 1, 1. 1. 1, 1. 1.
1. 1. 1. 1, 1, 1, 1, 1. 1, 1. 1, 1, 1, 1, 1. 1,
1, 1, 1. 1. 1, 1, 1, 1, 1. 1. 1. 1, 1, 1, 1, 1,
1. 1. 1. 1, 1, 1, 1, 1, 1. 1, 1. 1. 1. 1. 1. 1.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1. 1, 1, 1, 1, 1, 1. 1.
1, 1, 1, 1, i, I, I, I, 1, 1, 1, 1, 1, I, I, 1,

1’ ,

/* INITIALIZE THE MODEL. '/

start-model0
! lnt 1:

for (i - 0; i<No-of-chars: it+) (
char-to-index[i] - itl;
index_to-char[i+l) - i;

I

/* Set up tables that l /
/* translate between symbol l /
/* indexes and characters. l /

cum-freq[No-of-symbols] - 0;
for (1 - No-of-symbols; i>O; i--l (/* Set up cumulative

cum-freq[i-lj - cum-freq[i] t freq(iJ; /* frequency counts.
I

l /
'/

if (cum-freq[Ol > Max-frequency) abort0; /* Check counts within limit*/

/* UPDATE THE MODEL TO ACCOUNT FOR A NEW SYMBOL. 'I

update-model (symbol)
lnt symbol;

I
I

/* Do nothing. l /

530 Communications of the ACM]une 1987 Volume .30 Number 6

FIGURE 4. Fixed and Adaptive Models for Use with Figure 3

Computing Practices

adaptive-mode1.c

1
2
3
4
5
6
7
0
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
21
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
40
49
50
51
52
53

/* THE ADAPTIVE SOURCE MODEL l /

#include "modo1.h"

int freq]No-of-symbolstl]: /+ symbol frequencies l /

/' INITIALIZE THE MODEL. l /

start-model0
I int i:

for (i - 0; i<No-of-chars; it+) (
char-to-index[l] - itl:
index-to-char[itl] - i:

I
for (i - 0; i<-No-of-symbols; it+) (

freq[i] - 1;
cum-freq[i] - No-of-symbols-i;

t
freq[O] - 0;

t

/* Set up tables that l /
/* translate between symbol l /
/* indexes and characters. l /

/* Set up initial frequency l /
/* counts to be one for all l /
/* symbols. l /

/* Freq[Ol must not be the l /
/* same as freq[l]. l /

/' UPDATE THE MODEL TO ACCOUNT FOR A NEW SYMBOL. '/

update~model(symbo1)
int symbol: /* Index of new symbol '1

(lnt 1; /* New index for symbol l /
if (cum-freq]O]--Max-frequency) (/* See if frequency count8 l /

int cum; /* are at thslr maxlawn. l /
cum - 0:
for (1 - No-of-symbols; la-O; i--) (/* If so, halve all the l /

freq[i] - (freq(i]+1]/2: /* counts (keeplng them l /
cum-freq[l] - cum; /* non-zero). l /
cum t- freq[l];

t
t
ior (i - symbol; freq(i]--freq[i-1): l--l : /* Find symbol's new Index. l /
if (i<symbol)]

int ch-i, ch-symbol :
ch-i - index-to-char[i]; /* Update the translation l /
ch-symbol - index-to-char[aymbol]; /* tables lf the symbol has l /
index-to-char[i] - ch-symbol: /* moved. l /
index-to-char[symbol] - ch-1;
char-to-index]ch-i] - symbol:
char-to-in'

I
freq[i] +- 1;
while (i>O) (

i -- 1:
cum-freq]!

t
t

dex[ch-symbol] - i;

1 t- 1;

/* Increment the frequency l /
/* count for the symbol and l /
/* update the cumulative l /
/* frequencies. '/

FIGURE 4. Fixed and Adaptive Models for Use with Figure 3 (continued)

/me 1987 Volume 30 Number 6 Communications of the ACM 531

Computing Practices

Representing the Model
Implementations of models are discussed in the next
section; here we are concerned only with the inter-
face to the model (lines 20-38). In C, a byte is repre-
sented as an integer between 0 and 255 (a char).
Internally, we represent a byte as an integer be-
tween 1 and 257 inclusive (an index), EOF being
treated as a 257th symbol. It is advantageous to sort
the model into frequency order, so as to minimize
the number of executions of the decoding loop
(line 189). To permit such reordering, the char/index
translation is implemented as a pair of tables,
index-to-char[] and char-to-index[]. In one of our
models, these tables simply form the index by adding
1 to the char, but another implements a more com-
plex translation that assigns small indexes to fre-
quently used symbols.

The probabilities in the model are represented as
integer frequency counts, and cumulative counts are
stored in the array cum- freq[]. As previously, this
array is “backwards,” and the total frequency count,
which is used to normalize all frequencies, appears
in cum - fre9 [O]. Cumulative counts must not exceed
a predetermined maximum, Max- frequency, and the
model implementation must prevent overflow by
scaling appropriately. It must also ensure that neigh-
boring values in the cum- freq [] array differ by at
least 1; otherwise the affected symbol cannot be
transmitted.

Incremental Transmission and Reception
Unlike Figure 2 the program in Figure 3 repre-
sents low and high as integers. A special data type,
code-value, is defined for these quantities, together
with some useful constants: Top-value, representing
the largest possible code-value, and First-qtr, Half,
and Third-@, representing parts of the range
(lines 6-16). Whereas in Figure 2 the current inter-
val is represented by [low, high), in Figure 3 it is
[low, high]; that is, the range now includes the value
of high. Actually, it is more accurate (though more
confusing) to say that, in the program in Figure 3,
the interval represented is [low, high + 0.11111 . .o).
This is because when the bounds are scaled up to
increase the precision, zeros are shifted into the low-
order bits of low, but ones are shifted into high. Al-
though it is possible to write the program to use a
different convention, this one has some advantages
in simplifying the code.

As the code range narrows, the top bits of low and
high become the same. Any bits that are the same
can be transmitted immediately, since they cannot
be affected by future narrowing. For encoding, since
we know that low 5 high, this requires code like

for (;;I {
if (high < Half) [

output-bit(O);
low = 2*1ow;
high = 2*high+l;

I
else if (low I Half) (

output-bit(l);
low = 2*(low-Half);
high = 2*(high-Half)+l;

I
else break;

I

which ensures that, upon completion, low < Half
I high. This can be found in lines 95-113 of
encode-symbol (1, although there are some extra com-
plications caused by underflow possibilities (see the
next subsection). Care is taken to shift ones in at the
bottom when high is scaled, as noted above.

Incremental reception is done using a number
called value as in Figure 2, in which processed
bits flow out the top (high-significance) end and
newly received ones flow in the bottom. Initially,
start-decoding0 (lines 168-176) fills value with re-
ceived bits. Once decode-symbol () has identified the
next input symbol, it shifts out now-useless high-
order bits that are the same in low and high, shifting
value by the same amount (and replacing lost bits by
fresh input bits at the bottom end):

for (;;) 1
if (high < Half) (

value = 2*value+input_bit();
low = 2*1ow;
high = 2*high+l;

I
else if (low > Half) (

value = 2*(value-Half)+input-bit();
low = 2*(low-Half);
high = 2*(high-Half)+l;

I
else break;

t

(see lines 194-213, again complicated by precautions
against underflow, as discussed below).

Proof of Decoding Correctness
At this point it is worth checking that identification
of the next symbol by decode-symbol () works
properly. Recall from Figure 2 that decode-symbol ()
must use value to find the symbol that, when en-
coded, reduces the range to one that still includes
value. Lines 186-188 in decode-symbol0 identify the
symbol for which

532 Communications of the ACM]une 1987 Volume 30 Number 6

cum-freq[symbol]

~

i

(value - low + 1) * cum-freq[O] - 1
high - low + 1 1

< cum-freq[symbol- 11,

where L J denotes the “integer part of” function that
comes from integer division with truncation. It is
shown in the Appendix that this implies

low + (high - low + 1) * cum-freq[symboZ]

i cum-freq[O] 1

lV5lOW

+ (high - low + 1) * cum-freq[symbol- l]

L cum-freq[O] J ’

_ 1

so that value lies within the new interval that
decode-symbol () calculates in lines 190-193. This is
sufficient to guarantee that the decoding operation
identifies each symbol correctly.

Underflow
As Figure 1 shows, arithmetic coding works by scal-
ing the cumulative probabilities given by the model
into the interval [low, high] for each character trans-
mitted. Suppose low and high are very close to-
gether-so close that this scaling operation maps
some different symbols of the model onto the same
integer in the [low, high] interval. This would be
disastrous, because if such a symbol actually oc-
curred it would not be possible to continue encod-
ing. Consequently, the encoder must guarantee
that the interval [low, high] is always large enough
to prevent this. The simplest way to do this is
to ensure that this interval is at least as large as
Max- frequency, the maximum allowed cumulative
frequency count (line 36).

How could this condition be violated? The bit-
shifting operation explained above ensures that low
and high can only become close together when they
straddle Half. Suppose in fact they become as close
as

First-qtr I low < Half I high c Third-qtr.

Then the next two bits sent will have opposite polar-
ity, either 01 or 10. For example, if the next bit turns
out to be zero (i.e., high descends below Half and
[0, Half] is expanded to the full interval), the bit
after that will be one, since the range has to be
above the midpoint of the expanded interval. Con-
versely, if the next bit happens to be one, the one
after that will be zero. Therefore the interval can
safely be expanded right now, if only we remember

June 1987 Volume 30 Number 6

Computing Practices

that, whatever bit actually comes next, its opposite
must be transmitted afterwards as well. Thus lines
104-109 expand [First-qtr, Third-qtr] into the whole
interval, remembering in bits-to- follow that the
bit that is output next must be followed by an oppo-
site bit. This explains why all output is done via
bit-plus- foZZow() (lines 128-135), instead of directly
with output-bit().

But what if, after this operation, it is still true that

First-qtr I low < Half I high < Third-qtr?

Figure 5 illustrates this situation, where the current
[low, high] range (shown as a thick line) has been
expanded a total of three times. Suppose the next bit
turns out to be zero, as indicated by the arrow in
Figure 5a being below the halfway point. Then the
next three bits will be ones, since the arrow is not
only in the top half of the bottom half of the original
range, but in the top quarter, and moreover the top
eighth, of that half-this is why the expansion can
occur three times. Similarly, as Figure 6b shows, if
the next bit turns out to be a one, it will be followed
by three zeros. Consequently, we need only count
the number of expansions and follow the next bit by
that number of opposites (lines 106 and 131-134).

Using this technique the encoder can guarantee
that, after the shifting operations, either

or

low < First-qtr < Half I high (14

low < Half < Third-qtr I high. (lb)

Therefore, as long as the integer range spanned by
the cumulative frequencies fits into a quarter of that
provided by code-values, the underflow problem
cannot occur. This corresponds to the condition

Max- frequency 5
Top-value + 1 + 1

4

which is satisfied by Figure 3, since Max- frequency
= 214 - 1 and Top-value = 216 - 1 (lines 36, 9). More
than 14 bits cannot be used to represent cumulative
frequency counts without increasing the number of
bits allocated to code-values.

We have discussed underflow in the encoder only.
Since the decoder’s job, once each symbol has been
decoded, is to track the operation of the encoder,
underflow will be avoided if it performs the same
expansion operation under the same conditions.

Overflow
Now consider the possibility of overflow in the
integer multiplications corresponding to those of
Figure 2, which occur in lines 91-94 and 190-193

Communications of the ACM 533

(4

08
Top-value -

Third-qtr

high

Half

First+

o-

/-

FIGURE 5. Scaling the Interval to Prevent Underflow

of Figure 3. Overflow cannot occur provided the
product

fits within the integer word length available,
since cumulative frequencies cannot exceed
Max- frequewy. Rarjge might be as large as Top-value
+ 1. so the largest possible product in Figure 3 is
2”‘(2’4 - 1). which is less than 2”“. Long declarations
are used for code-zwlue (line 7) and range (lines 89,
183) to ensure that arithmetic is done to 32-bit preci-
sion.

Constraints on the Implementation
The constraints on word length imposed by under-
flow and overflow can be simplified by assuming
that frequency counts are represented in f bits, and
code-zwlurs in c bits, The implementation will work
correctly provided

fsc-2
f+CSp,

the precision to which arithmetic is performed.

In most C implementations, p = 31 if long integers

534 Cotnrnu~~icatiom of the ACM lune 1987 Volume 30 Number 6

Computing Practices

are used, and p = 32 if they are unsigned long. In
Figure 3, f = 14 and c = 16. With appropriately
modified declarations, unsigned long arithmetic with
f = 15 and c = 17 could be used. In assembly lan-
guage, c = 16 is a natural choice because it expedites
some comparisons and bit manipulations (e.g., those
of lines 65-113 and 164-213).

If p is restricted to 16 bits, the best values possible
are c = 8 and f = 7, making it impossible to encode a
full alphabet of 256 symbols, as each symbol must
have a count of at least one. A smaller alphabet (e.g.,
the 26 letters, or 4-bit nibbles) could still be handled.

Termination
To finish the transmission, it is necessary to send a
unique terminating symbol (EOF-symbol, line 56)
and then follow it by enough bits to ensure that the
encoded string falls within the final range. Since
done-encoding0 (lines 116-123) can be sure that low
and high are constrained by either Eq. (la) or (lb)
above, it need only transmit 01 in the first case or 10
in the second to remove the remaining ambiguity. It
is convenient to do this using the bit-plus- foZZow()
procedure discussed earlier. The input- bit () proce-
dure will actually read a few more bits than were
sent by output-bit(), as it needs to keep the low end
of the buffer full. It does not matter what value these
bits have, since EOF is uniquely determined by the
last two bits actually transmitted.

MODELS FOR ARITHMETIC CODING
The program in Figure 3 must be used with a
model that provides a pair of translation tables
index-to-char[] and char-to-index[], and a cumula-
tive frequency array cum - freq [1, The requirements
on the latter are that

0 cum-freq[i - l] 2 cum-freq[i];
l an attempt is never made to encode a symbol i for

which cum-freq[i - l] = cum-freq[i]; and
l cum- freq [0] 5 Max- frequency.

Provided these conditions are satisfied, the values in
the array need bear no relationship to the actual
cumulative symbol frequencies in messages. Encod-
ing and decoding will still work correctly, although
encodings will occupy less space if the frequencies
are accurate. (Recall our successfully encoding eaii!
according to the model of Table I, which does not
actually reflect the frequencies in the message.)

Fixed Models
The simplest kind of model is one in which symbol
frequencies are fixed. The first model in Figure 4
has symbol frequencies that approximate those of
English (taken from a part of the Brown Corpus [12]).

However, bytes that did not occur in that sample
have been given frequency counts of one in case
they do occur in messages to be encoded (so this
model will still work for binary files in which
all 256 bytes occur). Frequencies have been normal-
ized to total 8000. The initialization procedure
start-model () simply computes a cumulative version
of these frequencies (lines 48-51), having first initial-
ized the translation tables (lines 44-47). Execution
speed would be improved if these tables were used
to reorder symbols and frequencies so that the most
frequent came first in the cum _ freq [] array. Since
the model is fixed, the procedure update-model 0,
which is called from both encode.c and decode.c, is
null.

An exact model is one where the symbol frequen-
cies in the message are exactly as prescribed by the
model. For example, the fixed model of Figure 4 is
close to an exact model for the particular excerpt of
the Brown Corpus from which it was taken. To be
truly exact, however, symbols that did not occur in
the excerpt would be assigned counts of zero, rather
than one (sacrificing the capability of transmitting
messages containing those symbols). Moreover, the
frequency counts would not be scaled to a predeter-
mined cumulative frequency, as they have been in
Figure 4. The exact model can be calculated and
transmitted before the message is sent. It is shown
by Cleary and Witten [3] that, under quite general
conditions, this will not give better overall compres-
sion than adaptive coding (which is described next).

Adaptive Models
An adaptive model represents the changing symbol
frequencies seen so fur in a message. Initially all
counts might be the same (reflecting no initial infor-
mation), but they are updated, as each symbol is
seen, to approximate the observed frequencies. Pro-
vided both encoder and decoder use the same initial
values (e.g., equal counts) and the same updating
algorithm, their models will remain in step. The en-
coder receives the next symbol, encodes it, and up-
dates its model. The decoder identifies it according
to its current model and then updates its model.

The second half of Figure 4 shows such an adap-
tive model. This is the type of model recommended
for use with Figure 3, for in practice it will outper-
form a fixed model in terms of compression effi-
ciency. Initialization is the same as for the fixed
model, except that all frequencies are set to one.
The procedure update-model (symbol) is called by
both encode-symbol () and decode-symbol () (Figure 3,
lines 54 and 151) after each symbol is processed.

Updating the model is quite expensive because of
the need to maintain cumulative totals. In the code

June 1987 Volume 30 Number 6 Communications of the ACM 535

Computing Practices

of Figure 4, frequency counts, which must be main-
tained anyway, are used to optimize access by keep-
ing the array in frequency order-an effective kind
of self-organizing linear search [9]. Update-model0
first checks to see if the new model will exceed the
cumulative-frequency limit, and if so scales all fre-
quencies down by a factor of two (taking care to
ensure that no count scales to zero) and recomputes
cumulative values (Figure 4, lines 29-37). Then, if
necessary, update-model () reorders the symbols to
place the current one in its correct rank in the fre-
quency ordering, altering the translation tables to
reflect the change. Finally, it increments the appro-
priate frequency count and adjusts cumulative fre-
quencies accordingly.

PERFORMANCE
Now consider the performance of the algorithm of
Figure 3, both in compression efficiency and execu-
tion time.

Compression Efficiency
In principle, when a message is coded using arith-
metic: coding, the number of bits in the encoded
string is the same as the entropy of that message
with respect to the model used for coding. Three
factors cause performance to be worse than this in
practice:

(1) message termination overhead;
(2) the use of fixed-length rather than infinite-

precision arithmetic; and
(3) scaling of counts so that their total is at most

Max- frequency.

None of these effects is significant, as we now show.
In order to isolate the effect of arithmetic coding, the
model will be considered to be exact (as defined
above).

Arithmetic coding must send extra bits at the
end of each message, causing a message termina-
tion overhead. Two bits are needed, sent by
done-encoding() (Figure 3, lines 119-123), in order to
disambiguate the final symbol. In cases where a bit
stream must be blocked into 8-bit characters before
encoding, it will be necessary to round out to the
end of a block. Combining these, an extra 9 bits may
be required.

The overhead of using fixed-length arithmetic oc-
curs because remainders are truncated on division.
It can be assessed by comparing the algorithm’s per-
formance with the figure obtained from a theoretical
entropy calculation that derives its frequencies from
counts scaled exactly as for coding. It is completely
negligible-on the order of lop4 bits/symbol.

The penalty paid by scaling counts is somewhat
larger, but still very small. For short messages (less
than 214 bytes), no scaling need be done. E:ven with
messages of 105-lo6 bytes, the overhead was found
experimentally to be less than 0.25 percent of the
encoded string.

The adaptive model in Figure 4 scales down all
counts whenever the total threatens to exceed
Max- frequency. This has the effect of weighting re-
cent events more heavily than events from earlier in
the message. The statistics thus tend to track
changes in the input sequence, which can be very
beneficial. (We have encountered cases where limit-
ing counts to 6 or 7 bits gives better results than
working to higher precision.) Of course, this depends
on the source being modeled. Bentley et al. [2] con-
sider other, more explicit, ways of incorporating a
recency effect.

Execution Time
The program in Figure 3 has been written for clarity
rather than for execution speed. In fact, with the
adaptive model in Figure 4, it takes about 420 PS per
input byte on a VAX-11/780 to encode a text file,
and about the same for decoding. However, easily
avoidable overheads such as procedure calls account
for much of this, and some simple optimizations in-
crease speed by a factor of two. The following altera-
tions were made to the C version shown:

(1)

(2)

(3)

(4)

The procedures input-bif(), output-bit(), and
bit-plus- follow() were converted to macros to
eliminate procedure-call overhead.
Frequently used quantities were put in register
variables.
Multiplies by two were replaced by additions
(C ‘I,=“).
Array indexing was replaced by pointer manip-
ulation in the loops at line 189 in Figure 3 and
lines 49-52 of the adaptive model in Figure 4.

This mildly optimized C implementation has an
execution time of 214 ps/252 ps per input byte, for
encoding/decoding 100,000 bytes of English text on
a VAX-11/780, as shown in Table II. Also given are
corresponding figures for the same program on an
Apple Macintosh and a SUN-3/75. As can be seen,
coding a C source program of the same length took
slightly longer in all cases, and a binary object pro-
gram longer still. The reason for this will be dis-
cussed shortly. Two artificial test files were included
to allow readers to replicate the results. “Alphabet”
consists of enough copies of the 26-letter alphabet to
fill out 100,000 characters (ending with a partially
completed alphabet). “Skew statistics” contains

536 Communications of the ACM Ime 1987 Volume 30 Number 6

Computing Practices

TABLE II. Results for Encoding and Decoding 100,000-Byte Files

VAX-H/788 Macintosh 512 K SUN-3175

Encode time Decodetlme Encode time oeclxletlme Encode time oecodetime
w (I4 (ccs) (as) (PS) b4

Mildly optimized C implementation
Text file 57,718 214
C program 82,991 230
VAX object program 73,501 313
Alphabet 59,292 223
Skew statistics 12,092 143

Carefully optimized assembly-language implementation
Text file 57,718 104
C program 62,991 109
VAX object program 73,501 158
Alphabet 59,292 105
Skew statistics 12,092 63

262 687
288 729
406 950
277 719
170 507

98 121
105 131
145 190
105 130

70 85

135 194 243 46 58
151 208 266 51 65
241 280 402 75 107
145 204 264 51 65

81 126 160 28 36

Notes: Times are measured in microseconds per byte of uncompressed data.
The VAX-l l/760 had a floating-point accelerator, which reduces integer multiply and divide times.
The Macintosh uses an E-MHz MC66000 with some memory wait states.
The SUN-3175 uses a 16.67-MHz MC66020.
All times exclude I/O and operating-system overhead in support of l/O. VAX and SUN figures give user time from the UNIX* time command;

on the Macintosh, l/O was explicitly directed to an array.
The 4.2BSD C compiler was used for VAX and SUN; Aztec C 1.06g for Macintosh.

TABLE III. Breakdown of Timings for the VAX-U/780
Assembly-Language Version

10,000 copies of the string aaaabaaaac; it demon-
strates that files may be encoded into less than one
bit per character (output size of 12,092 bytes =
96,736 bits). All results quoted used the adaptive
model of Figure 4.

A further factor of two can be gained by repro-
gramming in assembly language. A carefully opti-
mized version of Figures 3 and 4 (adaptive model)
was written in both VAX and M68000 assembly lan-
guages. Full use was made of registers, and advan-
tage taken of the Is-bit code-value to expedite some
crucial comparisons and make subtractions of Half
trivial. The performance of these implementations
on the test files is also shown in Table II in order
to give the reader some idea of typical execution
speeds.

The VAX-11/780 assembly-language timings are
broken down in Table III. These figures were ob-
tained with the UNIX profile facility and are accu-
rate only to within perhaps 10 percent. (This mech-
anism constructs a histogram of program counter
values at real-time clock interrupts and suffers from
statistical variation as well as some systematic er-
rors.) “Bounds calculation” refers to the initial parts
of encode-symbol () and decode-symbol () (Figure 3,
lines 90-94 and 190-l%), which contain multiply
and divide operations. “Bit shifting” is the major
loop in both the encode and decode routines
(lines 96-113 and 194-213). The cum calculation in
decode-symbol (1, which requires a multiply/divide,
and the following loop to identify the next symbol
(lines 187-189), is “Symbol decode.” Finally, “Model

Encods time Decode the
(PSI (4

Text file
Bounds calculation
Bit shifting

Model update
Symbol decode
Other

32
39
29

-

4
104

31
30
29
45

0
135

C program
Bounds calculation
Bit shifting
Model update
Symbol decode
Other

30 28
42 35
33 36

- 51
4

109
1

151

VAX object program
Bounds calculation
Bit shifting
Model update
Symbol decode
Other

34 31
46 40
75 75

- 94
3

158
1

241

update” refers to the adaptive update-model () proce-
dure of Figure 4 (lines 26-53).

As expected, the bounds calculation and model
update take the same time for both encoding and
decoding, within experimental error. Bit shifting was
quicker for the text file than for the C program and
object file because compression performance was

]une 1987 Volume 30 Number 6 Communications of the ACM 537

-

Computing Practices

better. The extra time for decoding over encoding is
due entirely to the symbol decode step. This takes
longer in the C program and object file tests because
the loop of line 189 was executed more often (on
average 9 times, 13 times, and 35 times, respec-
tively). This also affects the model update time be-
cause it is the number of cumulative counts that
must be incremented in Figure 4, lines 49-52. In the
worst case, when the symbol frequencies are uni-
formly distributed, these loops are executed an aver-
age of 128 times. Worst-case performance would be
improved by using a more complex tree representa-
tion for frequencies, but this would likely be slower
for text files.

SOME APPLICATIONS
Applications of arithmetic coding are legion. By lib-
erating coding with respect to a model from the mod-
eling required for prediction, it encourages a whole
new view of data compression [19]. This separation
of function costs nothing in compression perfor-
mance, since arithmetic coding is (practically) opti-
mal with respect to the entropy of the model. Here
we intend to do no more than suggest the scope of
this view by briefly considering

(1) adaptive text compression,
(2) nonadaptive coding,
(3) compressing black/white images, and
(4) coding arbitrarily distributed integers.

Of course, as noted earlier, greater coding efficien-
cies could easily be achieved with more sophisti-
cated models. Modeling, however, is an extensive
topic in its own right and is beyond the scope of this
article.

Adaptive text compression using single-character
adaptive frequencies shows off arithmetic coding
to good effect. The results obtained using the pro-
gram in Figures 3 and 4 vary from 4.8-5.3 bits/char-

acter for short English text files (103-lo4 bytes) to
4.5-4.7 bits/character for long ones (105-lo6 bytes).
Although adaptive Huffman techniques do exist
(e.g., [5, i’]), they lack the conceptual simplicity of
arithmetic coding. Although competitive :in compres-
sion efficiency for many files, they are slower. For
example, Table IV compares the performance of the
mildly optimized C implementation of arithmetic
coding with that of the UNIX compact program that
implements adaptive Huffman coding using a similar
model. (Compact’s model is essentially the same for
long files, like those of Table IV, but is better for
short files than the model used as an example in this
article.) Casual examination of compact in’dicates that
the care taken in optimization is roughly lcomparable
for both systems, yet arithmetic coding hallves exe-
cution time. Compression performance is somewhat
better with arithmetic coding on all the example
files. The difference would be accentuated with
more sophisticated models that predict symbols with
probabilities approaching one under certain circum-
stances (e.g., the letter u following 9).

Nonadaptive coding can be performed adthmeti-
tally using fixed, prespecified models like that in
the first part of Figure 4. Compression performance
will be better than Huffman coding. In order to mini-
mize execution time, the total frequency count,
cum- freq[O], should be chosen as a power of two so
the divisions in the bounds calculations (Figure 3,
lines 91-94 and 190-193) can be done as shifts. En-
code/decode times of around 60 ps/90 PS should
then be possible for an assembly-language imple-
mentation on a VAX-11/780. A carefully written im-
plementation of Huffman coding, using table lookup
for encoding and decoding, would be a bit faster in
this application.

Compressing black/white images using arithmetic
coding has been investigated by Langdon and
Rissanen [14], who achieved excellent results using

TABLE IV. Comparison of Arithmetic and Adaptive Huffman Coding

Arithmeticcadlng Adaptive Huffman coding

22
Encodetime Deco&time Encode time oscodetime

(4 (f4 St b4 CS)
Text file 57,718 214 262 57,781 550 414
C program 62,991 230 288 63,731 596 441
VAX object program 73,546 313 406 76,950 822 606
Alphabet 59,292 223 277 60,127 598 411
Skew statistics 12,092 143 170 16,257 215 132

Notes: The mildly optimized C implementation was used for arithmetic coding.
UNIX compact was used for adaptive Huffman coding.
Times are for a VAX-l l/780 and exclude I/O and operating-system overhead in support of I/O.

538 Commlkcations of the ACM June 1987 Volume 30 Number 6

Computing Practices

a model that conditioned the probability of a pixel’s
being black on a template of pixels surrounding it.
The template contained a total of 10 pixels, selected
from those above and to the left of the current one
so that they precede it in the raster scan. This cre-
ates 1024 different possible contexts, and for each
the probability of the pixel being black was esti-
mated adaptively as the picture was transmitted.
Each pixel’s polarity was then coded arithmetically
according to this probability. A 20-30 percent im-
provement in compression was attained over earlier
methods. To increase coding speed, Langdon and
Rissanen used an approximate method of arithmetic
coding that avoided multiplication by representing
probabilities as integer powers of %. Huffman cod-
ing cannot be directly used in this application, as it
never compresses with a two-symbol alphabet. Run-
length coding, a popular method for use with two-
valued alphabets, provides another opportunity for
arithmetic coding. The model reduces the data to a
sequence of lengths of runs of the same symbol (e.g.,
for picture coding, run-lengths of black followed by
white followed by black followed by white . . .). The
sequence of lengths must be transmitted. The CCITT
facsimile coding standard [ll] bases a Huffman code
on the frequencies with which black and white runs
of different lengths occur in sample documents. A
fixed arithmetic code using these same frequencies
would give better performance: adapting the fre-
quencies to each particular document would be
better still.

Coding arbitrarily distributed integers is often called
for in use with more sophisticated models of text,
image, or other data. Consider, for instance, the lo-
cally adaptive data compression scheme of Bentley
et al. [2], in which the encoder and decoder cache
the last N different words seen. A word present in
the cache is transmitted by sending the integer
cache index. Words not in the cache are transmitted
by sending a new-word marker followed by the
characters of the word. This is an excellent model
for text in which words are used frequently over
short intervals and then fall into long periods of dis-
use. Their paper discusses several variable-length
codings for the integers used as cache indexes.
Arithmetic coding allows any probability distribution
to be used as the basis for a variable-length encod-
ing, including-among countless others-the ones
implied by the particular codes discussed there. It
also permits use of an adaptive model for cache in-
dexes, which is desirable if the distribution of cache
hits is difficult to predict in advance. Furthermore,
with arithmetic coding, the code spaced allotted to
the cache indexes can be scaled down to accommo-

date any desired probability for the new-word
marker.

APPENDIX. Proof of Decoding Inequality

Using one-letter abbreviations for cum- freq,
symbol, low, high, and value, suppose

c[s] 5
L

(V-Z + 1) x c[O] - 1

h-I+1 1

< c[s - 11;

in other words,

c[s] 5
(v - I + 1) x c[O] - 1

-&
r (1)

5 c[s - l] - 1,

where

r=h-l+l,
1

OSEIT-.
r

(The last inequality of Eq. (1) derives from the
fact that c[s - l] must be an integer.) Then we
wish to show that I ’ I v I h’, where 1’ and h’
are the updated values for low and high as defined
below.

(v - I + 1) X c[O] - 1 (I : r
-

CPI [
-e

r 1
from Eq. (l),

5v+l--
w ’

so 1’ 5 v since both v and 1’ are integers and
c[O] > 0.

(b) h’-‘+L’X:;“o,“J-I

z-z+T
CPI [

(v - I + 1) x c[O] - 1 + 1 _ c _ 1
r 1

from Eq. (1)

REFERENCES
1. Abramson, N. Information Theory and Coding. McGraw-Hill, New

York, 1963. This textbook contains the first reference to what was to
become the method of arithmetic coding (pp. 61-62).

2. Bentley. J.L., Sleator, D.D., Tarjan, R.E., and Wei, V.K. A locally
adaptive data compression scheme. Commun. ACM 29, 4 (Apr. 1986),
320-330. Shows how recency effects can be incorporated explicitly
into a text compression system.

]une 1987 Volume 30 Number 6 Communications of the ACM 939

Computing Practices

3. Cleary, J.C., and Witten, I.H. A comparison of enumerative and
adaptive codes. IEEE Trans. Inf. Theory IT-30,2 (Mar. 1984). 306-315.
Demonstrates under quite general conditions that adaptive coding
outperforms the method of calculating and transmitting an exact
model of the message first.

4. Clearv. I.G.. and Witten. I.H. Data comoression using adaptive cod-

5

6.

7.

8.

9.

10.

11.

12.

13.

14.

ing and’partial string matching. IEEE T>ans. Commu~ C&-32,4
(Apr. 1984). 396-402. Presents an adaptive modeling method that
reduces a large sample of mixed-case English text to around
2.2 bits/character when arithmetically coded.
Cormack, G.V., and Horspool, R.N. Algorithms for adaptive Huffman
codes. Ir$ Process. Lett. 18, 3 (Mar. 19841, 159-166. Describes how
adaptive Huffman coding can be implemented efficiently.
Cormack, G.V., and Horspool, R.N. Data compression using dynamic
Markov modeling. Res. Rep., Computer Science Dept., Univ. of
Walerloo, Ontario, Apr. 1985. Also to be published in Cornput. 1.
Presents an adaptive state-modeling technique that, in conjunction
with arithmetic coding, produces results competitive with those
of [4].
Gallager, R.G. Variations on a theme by Huffman. IEEE Trans. tnf
Theory IT-24, 6 (Nov. 19781, 668-674. Presents an adaptive Huffman
coding algorithm, and derives new bounds on the redundancy of
Huffman codes.
Held, G. Data Compression: Techniques and Applications. Wiley, New
York, 1984. Explains a number of ad hoc techniques for compressing
text.
Hester, J.H., and Hirschberg, D.S. Self-organizing linear search. ACM
Comput. SKI-V. 17, 3 (Sept. 1985), 295-311. A general analysis of the
technique used in the present article to expedite access to an array
of dynamically changing frequency counts.
Huffman, D.A. A method for the construction of minimum-
redundancy codes. Proc. Inst. Electr. Radio Eng. 40, 9 (Sept. 1952),
1098-1101. The classic paper in which Huffman introduced his
famous coding method.
Hunter, R., and Robinson, A.H. International digital facsimile coding
standards. Proc. Inst. Electr. Electron. Eng. 68, 7 (July 1980), 854-867.
Describes the use of Huffman coding to compress run lengths in
black/white images.
Kucera, H., and Francis, W.N. Compufational Analysis of Present-Day
American English. Brown University Press, Providence, R.I.. 1967.
This large corpus of English is often used for computer experiments
with text, including some of the evaluation reported in the present
article.
Langdon, G.G. An introduction to arithmetic coding. IBMI. Res. Dev.
28, 2 (Mar. 1984), 135-149. Introduction to arithmetic coding from
the point of view of hardware implementation.
Langdon, G.G., and Rissanen, J. Compression of black-white images
with arithmetic coding. 1EEE Trans. Commun. COM 29,6 (June 1981),
858.-867. Uses a modeling method specially tailored to black/white
pictures, in conjunction with arithmetic coding, to achieve excel-
lent compression results.

15. Pasco, R. Source coding algorithms for fast data compression. Ph.D.
thesis, Dept. of Electrical Engineering, Stanford Univ., Stanford,
Calif., 1976. An early exposition of the idea of arithmetic coding, but
lacking the idea of incremental operation.

16.

17.

18.

19.

20.

21.

Rissanen, J.J. Generalized Kraft inequality and arithmmatic coding.
IBM 1. Res. Dev. 20 (May 1976), 198-203. Another early exposition of
the idea of arithmetic coding.
Rissanen. J.J. Arithmetic codings as number representations. Acta
Polytech. Stand. Math. 31 (Dec. 1979), 44-51. Further develops arith-
metic coding as a practical technique for data representation.
Rissanen, J., and Langdon, G.G. Arithmetic coding. IBM J. Res. Dev.
23, 2 (Mar. 1979). 149-162. Describes a broad class of arithmetic
codes.

Rissanen, J.. and Langdon, G.G. Universal modeling and coding. IEEE
Trans. Znf Theory IT-27, 1 (Jan. 1981), 12-23. Shows how data corn-
pression can be separated into modeling for prediction and coding
with respect to a model.
Rubin, F. Arithmetic stream coding using fixed precision registers.
IEEE Trans. If. Theory IT-25, 6 (Nov. 1979), 672-675. One of the first
papers to present all the essential elements of practical arithmetic
coding, including fixed-point computation and incremental opera-
tion.
Shannon, C.E.. and Weaver, W. The Mathematical Theory of Commu-
nication. University of Illinois Press, Urbana, Ill., 1949. A classic
book that develops communication theory from the ground up.

22. Welch, T.A. A technique for high-performance data compression.
Computer 17, 6 (June 1984), 8-19. A very fast coding technique based
on the method of [23], but whose compression performance is poor
by the standards of [4] and [6]. An improved implementation of this
method is widely used in UNIX systems under the name compress.

23. Ziv, J., and Lempel, A. Compression of individual sequences via
variable-rate coding. IEEE Trans. InJ Theory IT-24, 5 (Sept. 1978),
530-536. Describes a method of text compression that works by
replacing a substring with a pointer to an earlier occurrence of the
same substring. Although it performs quite well, it does not provide
a clear separation between modeling and coding.

CR Categories and Subject Descriptors: E.4 [Data]: Coding and Infor-
mation Theory-d&a compaction and compression; H.l.l [Models and
Principles]: Systems and Information Theory-information theory

General Terms: Algorithms, Performance
Additional Key Words and Phrases: Adaptive modeling. arithmetic

coding, Huffman coding

Received 8/86; accepted Z2/86

Authors’ Present Address: Ian H. Witten, Radford M. Neal, and John
G. Cleary, Dept. of Computer Science, The University of Calgary,
2500 University Drive NW, Calgary, Canada T2N lN4.

Permission to copy without fee all or part of this material IS granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

In response to membership requests . . .

CURRlCUl.A RECOMMENDATIONS FOR COMPUTING;

Volume I: Curricula Recommendations for Computer Science
Volume II: Curricula Recommendations for Information Systems

Volume III: Curricula Recommendations for kelated Computer Science Programs in Vocational-
Technical Schools, Community and Junior Colleges and Health Computing

Information available from Deborah Cotton-Single Copy Sales (212) 869-7440 ext. 309

540 Communications of the ACM]une 1987 Volume 30 Number 6

