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Introduction. A code is a mapping from a vector space of dimension m
over a finite field K (denoted by V.(K)) into a vector space of higher
dimension n > m over the same field (V.(K)). K is usually taken to be
the field of two elements Z,, in which case it is a mapping of m-tuples of
binary digits (bits) into n-tuples of binary digits. If one transmits n bits,
the additional n — m bits are “redundant” and allow one to.recover the
original message in the event that noise corrupts the signal during trans-
mission and causes some bits of the code to be in error. A multiple-error-
correcting code of order s consists of a code which maps m-tuples-of zeros
and ones into n-tuples of zeros and ones, where m and n both depend on s,
and a decoding procedure which recovers the message completely, assuming
no more than s errors occur during transmission in the vector of n bits.
The Hamming code [1] is an example of a systematic one bit error-correct-
ing code. We present here a new class of redundant codes along with a
decoding procedure.

Let K be a field of degree n over the field of two elements Z, . K contains
2" elements. Its multiplicative group is cyclic and is generated by powers
of @ where a is the root of a suitable irreducible polynomial over Z,. We
discuss here a code E which maps m-tuples of K into 2"-tuples of K.

Consider the polynomial P(x) of degree m — 1

P) =a+ar+ -+ Gui™,
where ¢; € K and m < 2", Code E is the mapping of the m-tuple (a0, a:,
-« , @my) into the 2"-tuple (P(0), P(a), P(a’), - -+, P(1)); this m-tuple
might be some encoded message and the corresponding 2"-tuple is to be
transmitted. This mapping of m symbols into 2" symbols will be shown to
be (2" — m)/2 or (2" — m — 1)/2 symbol correcting, depending on
whether m is even or odd.

A natural correspondence is established between the field elements of
K and certain binary sequences of length ». Under this correspondence,
code E may be regarded as a mapping of binary sequences of mn bits into
binary sequences of n2" bits. Thus code E can be interpreted to. be a sys-
tematic multiple-error-correcting code of binary sequences.

One should note that the binary representation of code E allows in
general for the correction of more than (2" — m — 1)/2 bits since each
symbol of the code is represented by n consecutive bits. Hence when the
binary errors are strongly correlated or occur in “bursts,” this code may be
more desirable than other more “‘efficient”’ multiple-error-correction codes.

Finally, it should be mentioned that code E may be generalized to poly-
nomials of the mth degree in several variables over K. Evidently, for K =
Z2, such codes reduce to Reed-Muller codes [2.

The code E. Consider the field K = Z,(a). This is the vector space over
Z, with basis 1, a, @, - - - , a", where a is the root of a suitable irreducible

polynomial over Z,. The nonzero elements of K form a multiplicative~

cyclic group. Thus we may represent the elements of K in the order
Ovﬁ;ﬂzy"'o»ﬁz‘_zyrﬁ”‘l=l
where 8 is a generator of the multiplicative eyclic group.
Let P(z) = ao + a:x + @’ + -+ + @mz™ . The code E sends

(ﬂo,al yty Amz, am—l)

= (P(0), P(8), P(8°), -++ , P(6"™), P(1)).

Upon receivitig the message (P(0), P(B), ---, P(1)), we may decode
the message by solving simultaneously any m of the 2" equations,

P{0) = a
PB) =ar+ a8 +af’ + -+ + ap ™"
P =am+taf +af+ -+ an

P(l)=a+a+a+ - +au
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We note that any m of these equations are linearly independent since
the coefficient determinant for, say, P(a), - -+, P(am), is

2 m—1

1 oy o ay
2 m—1

1 Olg oy as
w1

1 ap e oo

which is a Vandermonde determinant whose value is

= T (e + @) # 0.
Thus in the case of no errors in"the received values of P(-), we obtain

3’1) determinations of (@, *** , Gm1).

Any errors occurring in the values of P(-) will immediately disturb the
unanimity of the values obtained for the a.’s. Indeed, for sufficiently small
numbers of errors, by looking at the largest number of determinations for
any (@o, -+, Gm-1) (the plurality of votes received by any m-tuple) we
may detect the order of error made and correct it. We prove the following
statement.

Lemma. For s errors we can get at most (s + ;nn— 1) determinations

for a wrong m-tuple.

Proof. We look upon the simultaneous solution of m equations as the
intersection of m hyperplanes. The linear independence guarantees that
they meet at only one point. To obtain more than one solution for any m- °
tuple, we would need more than m hyperplanes meeting at that point. For
2 wrong m-tuple, we éan have at most s + m — 1 hyperplanes intersecting
at a single wrong point, where s is the number of mistaken equations and
where the remaining m — 1 equations are chosen from the 2" — s correct -
ones, Any more correct hyperplanes would determine the correct solution,
i.e., a different point of intersection from the assumed wrong one. There-
fore, there are at most (s + :: - 1) determinations for any wrong value.

Note that we get (2 ": #) determinations for the correct one, and a total
of (2 ) - (2 N s) wrong determinations.
m m
Thus, by examining the vote received by the individual candidates °
(a0, *** , Gm-1), we may determine the correct message and the number s.
Note that this is valid only when

EPNEER

or
—s>84+m—1
or
2" —m+1
s<—-———§———‘

The code will thus correct errors of order less than (2" — m 4 1)/2. For
m odd, we get corrections up to s = (2" — m — 1)/2, and detection at
s = (2" — m_+ 1)/2. For m even, we can correct up to s = (2" — m)/2
and not detect any further errors.

Translation of K into a binary alphabet. We represent the elements of
K by n-tuples of zeros and ones, V,(Z:), and define & multiplication on
Va(Zs) corresponding to the multiplication of K. We again note that the
multiplicative group of K is genérated by powers of 8. Let us consider an
irreducible polynomial f which generates K over Z;. Suppose f(z) =
2"+ ex" " + oo ez + 6 = 0, ¢; € Z; . Following N. Zierler [3],
we associate the following finite difference equation )

ot + COn1k + Colasr + o0+ Cabosr = 0

where a; € Z,.
Thus for any fixed f (giving rise to (¢1, -+« , ¢»)) and arbitrary (ao, ---,
@n1)(a: # 0fori =0,1,---,n — 1) we have a sequence '

Go, 01, "¢, Gury Gny Bagl, Guyz,y *°
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© where the values of a; for ¢ 2 n are determined by the above difference
equation. Zierler has shown that for suitable irreducible £, the sequence
. (a,) is periodic of period 2" — 1, i.e., @1 = ao, Gwym_y = @y and the
2" — 1 sequences of length n obtained by translating the n-tuple (ao, a; ,
*++, @n—1) along the derived sequence are all distinct.

Thus if we define

y Ga1)

B=(a,

ﬂg= (als"'iaﬂ)

3"‘ = (am_l , ‘e

we have a multiplication table for the n-tuples. In other words, multiplica-
tion of the elements is simply translation along this periodic sequence
~ generated by f. Note too that the elements 8 satisfy the algebraic equations
satisfied by corresponding elements in K. We have thus defined multiplica-
tion on V,(Z,) to make this correspond with the multiplication on K.

We remark that the initial choice of 8 = (ay, -+, @a_y) is arbitrary
and there are 2" — 1 such representations. There are of course many other
ways of associating vectors with powers of 8. The referee has suggested
- another natural algebraic association of V,(Z;) with K.

We identify K with the ring of polynomials in z with coefficients in Z,,
(ie., Zs[z]) modulo the prime ideal generated by the irreducible f(z). Let
8= (a,ar, -, @) be a nonzero vector of V,(Z,). We associate with
B the polynomial 8(x) = ao + &z + @ + - - @,2" " mod f(z). Consider
B(x)* mod f(x). This again is a polynomial of formal.degree (n. — 1). Let
8% be the vector whose components are the n coefficients of this (n — 1)-
' degree polynomial. This establishes a one-one correspondence of V,(Z;)
with K(if (0,0, - -+, 0) is added to correspond to zero in K). While this
may be a more natural choice, we prefer our first representation as the
more suitable for computability.

’ aﬂ+m—2)

Example. Let n = 3, m = 3. K

= Zs(a) where a is root of 2* + » +
1= 0. P(x) = by + b + bat’. :

Code E:  (bo, by, by) — (P(0), P(a), P(a?), -+, P(a®), P(1)).
Binary translation of this code. To (&) = +* + & + | we associate the
difference equation

M, = Ay + Gy (forn = 3,4,5, .-+ ).
Choose ay = 1,01 = 1, a2 = 0. Then

{an} = (11 1,0,0,1, 0,1,1,10, 0,101, --- )'

{a,} has period 7, i.e., a7 = av, a5 =
0= (0,0,0)
a=(1,1,0)
& =(1,0,0)
o’ =(0,0,1)
= (0,1, 0)
=(1,0,1)
ot =(0,1,1)
1=a =(1,1,1).

The message (0, o, ') — (P(0), P(a), P(a"), ---, P(a), P(1))
translates into (via P(x) = ax + o%%)

(000110001 )
—(000,001,110,110,111,000,001,111).
This code is error correcting up to (2° — 3 — 1)/2 = 2 symbols,
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