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ON A CLASS OF ERROR CORRECTING BINARY GROUP CODES™

by R. C. Bose and D. K, Ray-Chaudhuri
University of North Carolina and Case Institute of Technology

1., Introduction. Consider a binary channel which can transmit

either of two symbols O or 1, | However, due to the presence of"noise' 8
transmitted zero may sometimes be received as 1, and a transmitted 1 may
sometimes be received as O, When this happens we say that there is an
error in transmitting the symbol, The symbols successively presehted to
the channel for transmission constitute the 'input' and the symbols re-
ceived constitute the 'output’.

A v-letter n-pla.ce binary signalling alphebet An may be defined as
a set of v distinct sequences Ogs Qqs eoey Oy g of n binary digits. The
individual sequences may be called the letters of the alphabet. Given a
set of v distinct messages, we get an encoder En,v by setting up a (1,1)
correspondence between the messages and the letters of the alphabet. To
trensmit a message over the channel the n individuel symbols of the cor-
responding letter of the alphabet are presented to the channel in suc-
cession. The output is then an n-place binary sequence belonging to the
set Bn of all possible binary sequences. A decoder Dn,v is obtalned by
partitioning Bn into v disjoint sets Sl, SQ, sesy Sv and setting up a
correspondence between these subsets and the letters of the alphabet so
that if 8 sequence belonging to S:L is received as an ocutput, it is read
as the letter ozi and interpreted as the corresponding message. The encbder

En v together with the decoder Dn v constitute a binary n-place code.
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Each éeqpehee qf Bh cah be regarded as an n-vector with elements
from the Galdis field 6F(2). ‘he hdditioH of these vectors may then be
defined in the usual hehhdr) Yhe sum of two vectors being obtained by
adding the cotbespondilly elements (mod 2). For example, if n = 6 and
7y = (110011) ana 7o = (101001) then 7yt = (011010). Clearly the
set Bn of all binary n-place sequences forms a group under vector addi-
tion. The weight w(y) of any sequence is defined as the number of unities
in the sequence. Thus in the example considered w(yl) = b, w(72) = 3,
The Hamming distance d(71,72) between two sequences 4 and 75 is defined
as the number of places in which 71 and 72 do not match (Hamming, 1950).
Clearly d(7,,7,) = w(r;+7,). In the example d(7,,7,) = 3 = w(7;+7,).
The Hemming distance satisfies the three conditions for e metric, viz.

(1) a(y) = 0 if and only if y is the null vector,

(ii) 5(71,72)

(111) a(ry7,)

d('ya, 71)’

+

a(75473) 2 8(7575)-
Iet the letter o& of the alphsabet Ah be transmitted over the channel.

let € be the vector which has unities in those places, vwhere an error

occurs in tranemitting a symbol of a&. Then ei is the nolse vector., The

output received is the sequence o + €, and the number of errors is

w(ei). The code is said to be t-error correcting if o, + €,

whenever w(ei) <t (1=1,2,.,v). Itis clear that under these

belongs to
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circumstances if there are t or a lesser number of errors in transmitting
a letter ai, the recelved message will be correctly interpreted.
A particularly important class of codes has been studied by Slepian

(1956). For this class v = oK and the letters of the alphebet A form a
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subgroup of Bn' The null sequence is the unit element of Bn, and must
also belong to Ah' We shall suppose without loss of generality that
0y = (0,05444,0). Slepian's decoder may be described as follows: If
r = n~k,then the group Bn can be partitioned into oF cosets with respect
to the subgroup Ah' The coset containing a particular sequence B con-
gists of the sequences

Oy + By O3 + By eouy O 4 +Be
In the j-th coset we cen choose a sequence BJ whose weight does not ex-
ceed the weight of any other sequence in the coset, and call it the coset
leader. Let Byy Byy sees B 4o (u = 2%) be the coset leaders, where

0
the set of sequences ay + Bos ay + Bys voes g + Bye1 (3 = 051ye00,v=1).

Bo = (¢, 18 the null sequence and leader of the O-th coset Ah’ Iet S3 be

Then the decoder is obtained by partitioning Bn into So, Sl, ceey Sv-l
end setting up the rule thet if the sequence received as an output bg-
longs to Sj, it is read as the letter ab. The code thus obtained may bve
called an (n,k) binary group code. It is clear that a transmitted mes-
sage will be correctly interpreted if and only if the error vector hap-
pens to be a coset leader, Hence a necessary and sufficiént condition
for the code to he teerror correcting is that if P is any n-place binary
sequence for which w(B) < t, then B is a coset leader. The following
lemms is then easy to deduce.

Lemma 1. The necessary and sufficient condition for an (n,k) binary
group code to be t-~error correcting is that each letter of the alphabet
except the null letter has weight 2t + 1 or more.

Proof: Let «., Opy seey O 4 be the letters of the alphabet. Ilet

0
B be any n-place sequence for which w(B) < t, ILet (a&,B) denote the
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number of positions simultaneously occupied by unities in both o& and B.
Then |

(1.2) (08) S ¥(B) S %

and

(1.2) d(ay,B) = wloy+8) = wla,) + w(p) - 2(a,B) .

Hence

(1.3) wla,48) - w(B) > wle,) - 2t .

The necessary and sufficient condition for B to be the leader of the
coset in which it occurs is that the left hand side of (1.3) is non-zero
positive for 1 = Oyl,ses,v-1, The lemma follovs.

Since the v = 2k nessages can be transmitted by a k-place binary
code if there 1s no possibility of error, the number r = n-k is called
the redundancy for an (n,k) binary group code. In constructing a t-error
correcting (n,k) binary group code for given n and t one would like to
maximize k (i.e., maximize the number of different messages that it is
possible to transmit). VarSamov (1957) has shown that if k satisfies

the inequality

(1.4) F8L e (Y LB L e s e <2
where
(1.5) =1+ (D + Q)+ +(Q)

then a t-error correcting (n,k) group code exists.

The main result of the present paper is the following: If n = em;l,
then there exists a t-error correcting (n,k) binary group code with
kge‘“-l - mt.

The method of proof is comstructive and is illustrated by consider-
ing the case n = 15, t = 3, for which a 3-error correcting (15,5) binary

group code is explicitly obtained.
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' As an example of comparison between Var¥amov's result and our theorem
consider the case n = 31. VarSamov's result then shows that a 2-error
correcting binary group code can be obtained with k = 18, and a 3-error
correcting binary group code can be ohtained with k = 13 but is incon-
clusive for larger values of k. Our method, however, gives an explicit
construction for a 2-error correcting binary group code with k = 21, and
a 3-error correcting binary group code with k = 16.

The following table gives some of the values of n, k and t for
vhich a t-error correcting (n,k) binsry group code can be constructed

by our method. The transmission rate R = k/n is also given.

Ta.ble 1l
t n k R
' 2 11 4 36
2 15 7 A7
2 31 21 .68
2 63 51 .81
2 127 113 .89
3 15 3 33
3 31 16 .52
3 63 45 71
3 127 106 .83
L 63 39 .6l
4 127 99 .78
5 127 92 .72

2. We shall now prove e theorem which gives a necessery and suf-
ficient condition for the existence of a t-error correcting (m,k) group

code.
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Theorem 1. The necessary and sufficient condition for the existence
of & t-error correcting (n,k) binary group code is the existence of a
matrix A of order nxr and rank r = n-k with elements from GF(2), such
that any set of 2t row vectors from A are independent.,

Proof of sufficiency., The matrix A has the property (PEt) that any

2t row vectors of A sre independent. Clearly r ; 2t. The property (Pet)
is invariant under the following operations: (i) interchange of two
rows or columns and (1ii) replacement of the i-th column by the sum of
i-th and J-th column, i # j. By these operations A can be transformed
to the matrix

L

c

Ay

where A% has the property (Pat)’ Ir is the unit matrix of order r, and

(2.1) A% =

C is a matrix of order kxr., Consider the matrix

(2.2) c¥=/0C, L. 7.

Then C* is of order kxn. We shall show that the k rows of C (under
vector addition (mod 2)) are generators of a group G of order 2% such
thet if o is any arbitrary (non-null) element of G, then w(a) 2 2£+l.
ILet @ be the sum of any d row vectors of C¥, d < k¢ We can write

a = (y,€), vhere 7 is the part coming from C and € the part coming from
Ls Now w(a) = w(y) + w(€) = w(y) + 4. Hence w(a) > 2t+1 if 4 > 2t
Suppose d < 2t. If w(a) < 2t+1, then w(y) < 2t-d. ILet w(y) = c. There
are exactly ¢ positions in y which are occupied by unity. Corresponding
to each such position we can find & row vector of Ir which has unity in

this position (and zero in all other positions). Then these ¢ vectors

of Ir together with the d row vectors of C whose sum is 7, constitute a
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set of c+d vectors which are dependent. Since c+d § 2t, this contra-
dicts the fact that A* has the property (PEt)' Thus the weight of any
nonnull element of G is greater than or equal to 2t+l, It follows from
Lemma 1 that the sequences of the subgroup generated by the k rows of
C* form the aslphabet of a t-error correcting (n,k) group code,

Proof of necessity. Suppose there exists a t-error correcting (n,k)

binary group code. We can then find a set of k n-place binary sequences,
or n~-vectors with elements from GF(2), which under sddition generate the
group of sequences which constitute the letters of the alphebet. By
Lemma 1 if a is & sequence of this group w(a) > 2t+l. Consider the kxn
matrix C* vhose row vectors are given by these sequences. If we inter-
change any two rows or columns of C¥*, or replace the i-th row of C* by
the sum of the i~th and the j-th row (i # J), the transformed metrix
still retains the property that its rows generate under addition a group,
each sequence of which has weight 2t+l or more. Hence we can without
loss of generelity teks C* in the c8nonical form (2.2) where C is of
order rxk and Ik is the unit matrix of order k. By retracing the é,rgu-
ments used in proving the first part of the theorem, we see that the
matrix A¥ of order nxr, given by (2.1), has the property that any two

2t row vectors are independent. This proves that the condition of the
theorem 1s necessary,

Corollary 1. The existence of a t-error correcting (n,k) binary
group code implies the existence of a t-error correcting (n-c, k-c)
binary group code, 0 < c < k.

If in the matrix C* given by (2.2) we delete the last ¢ rows and

the last ¢ columns, we get a matrix
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Of = L0 Lo
of order (k-¢) x (n-c), the rows of which generate a group for which each
nonnull element is of weight 2t+1 or more. The rows of C{ generste the
alphebet of the required code.

Iet V} denote the vector space of all r-vectors whose elements be~
long to GF(2). One may then ask the following question. What is the
maximum number of vectors in a set £ chosen from V}, such that any 2t
distinct vectors from I are independent. This number may be denoted
net(r), and the problem of finding the set & may be called the packing
problem (of order 2t) for V.. For a given t, net(r) is a monotonically
increasing function of r.

let k = kt(n) denote the maximum value of k such that a t-error
correcting (n,k) binary group code for given t and n exists. We can
then state the following.

Theorem 2. If nat(r) >n> nat(r-l), then kt(n) =n -7,

From Theorem 1 there exists a t-error correcting (net(r), net(r) -r
binary group code, Taking ¢ = nat(r) -« n in Corollary 1, there exists &
t-error correcting (n, n-r) group code. But a t-error correcting
(n, n~r+l) binary group code cannot exist, since from Theorem 1 its
existence would imply that nat(r-l) >n, Hence kt(n) =n - r is the
maximum value of k for which a t-error correcting (n,k) binary group
cbde exists.

Thus the problem of finding a t-error correcting n-place binary
group code, with the maximum transmission rate k/n, is equivalent to
determining the smallest r for which there exists a set of n or more
distinct vectors of V}, such that any 2t distinct vecfors from the set

are independent.
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3. The theorem to be proved in the next section depends upon the

following lemma,
lLemna 2, If X5 Koy vees xI are different non-zero elements of the

Gelois field GF(2™), then the equations

(3.1) Bt s R PP x?i'l =0, 1i=21,2u.,t
cannot simultaneously hold if f < 2t.

Suppose if possible the equations (3.1) simultaneously hold. Iet

(3.2) xi + D xz'l + P, xl'e + ees + g = 0
be the algebraic equation whose rooits are Xy x2, sesy xﬂ. Then :p'j be-
longs to GF(Em) and is the sum of the products of the roots taken J et
a time (J = 1,2,¢00,{)s We define sy @s the sum of the j-th powers of
the roots, For a field of characteristic 2 the well lnown relations be-
tween the symmetric functions 8y and Py become (Ievi, 1942, p. 147),

8 + 81 Py = 0 |

Sy * Py 8y *8; Py =0
(3.3) Bs * Py 8y + Dy 8 +8; Py =0

sl + Py s[-l + 2, 5[-2 + ..f + ag P{ =0

vhere 5, = O or 1 according as i is even or odd. From equetions (3.1)

i
8y = O when J is odd (j < 2t). It then follows from (3.3) that 8y = 0
if j is even (J < f) and p,; = 0 if J is odd (<.

Case I. If { is odd then Pp = XXy eeo Xy # 0, eince X5 Xy eeey Xg
are non-zero. This is a contradiction.

Cagse II. If f{ is even, say { = 2c, the equation (3.2) becomes

2 2¢c~
(3.4) x° + D, X 2 b ee + Pp = O
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(3.5) e (* + qlxe'l

+ see + qc)2 =0

where a is the unique square root of pé 3 in GF(2™). Hence (3.2) cannot
have more than c¢ distinct roots, which agein is a contradiction, since
xl, Xpy eses xl are distinct by hypothesis,

Hence the lemma is true whether [ is odd or even.

b, Tet vV n be the vector space of m-vectors with elements from

GF(2). We cen imstitute a correspondence between the vector

' mel
o = (ao,al,...,am_l) of V, end the element &, + 8,X + «oy + 8 ,X of
cF(2™), vhere x is & given primitive element of the field. This is &

(1,1) correspondence in which the null vector ao of Vm corresponds to

the null element of GF(Em) s and the sum of any two vectors of Vm corre=-
sponds to the sum of the corresponding elements of Vm. We can therefore
identify the vector o of Vm and the corresponding element of GF(2m )
This in effect defines a multiplication of the vectors of Vm and con-
w)erts it into a field. In particuler we can speak of powers of any
vector, .

Iet th be the vector space of all mt-vectors with elements from

GF(2). To any vector czi of Vm there corresponds & unique vector or; of

th

(4.1) o* = (g a}, .'.., a";t'—l)

defined by

though the converse is true.

i

There are n = 2m-1 distinet nonnull vectors in Vm. Iet
t-1
al’ ai’ l.-l, af-

Ctg, &2' seay agt-l

{ %ns “3’ ee dﬁt-l F

L

(u'.a) M* =
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be the namt matrix, which has for row vectors the corresponding vectors
o@, og, evey oﬁ. We shall show that M* has the property (Pat) that any
of 2t distinet row vectors belonging to M* are independent. For this it
is sufficient that the sum of any f{ row vectors of M*, [ < 2t, is nonnull.
This 1s ensured by Lemma 2, since o, can also be regarded as elements of
ar(2).

Now rank (M¥*) < mt. Since there is essentially only one Galois
field GF(Em), this rank is a definite function of m and + and will be
denoted by R(m,t). When R(m,t) < mt, we can choose R(m,t) independent
columns of M¥, and delete the other columns dependent on them., The
matrix A so obtained has still the property (Pet). Using Theorem 1 we
have

Theorem 3. If n = 2m-l, we can obtain t-error correcting (n,k)
binary group code where k = 2%-1-R(m,t) > 2% 1-mt,

t-error correcting (n,k) binary group codes when n is not of the
form 2m-l can be deduced from those obtainable from Theorem 3, by using
Corollary 1 of Theorem 1. Strongef results than those which can be ob=-

tained in this way will be given in a subsequent communication.

5. The proofs of the theorems in sections 2 and 4 are constructive
in the sense that they give an actual procedure for obtaining the re-
quired codes. We shall illustrate the procedure to be followed by
teking the case m = 4, t = 3, Then n = 15 and the rank R(m,t) turns out
to be 10. We thus obtain a 3-error correcting (15, 5) group code. The
roots of the equation

(5-1) X = x+1
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' ~ are primitive elements of GF(2,+), (Carmichael, 1937, p. 262). Using
(5.1) the non-zero elements of GF(eh) can be expressed in two equivalent
forms (i) as powers of the primitive element x or (ii) as polynomials in
x of degree 3 or less. We thus have the following table of the 15 non-

2ero elements or vectors,

=1 = (1,0,0,0) = &

x = b = (0,1,0,0) = a,
£ = e = (0,0,1,0) = o
© = © = (0,0,0,1) = o,
£ o= 1ex = (L,1,0,0) = o
© = X + %2 = (0,1,1,0) = %
L = # +x = (0,0,1,1) = o,
o X = 1+x +® = (L,1,01) = o
U N = (1,0,1,0) = o
L = x +© = (0,1,0,1) = ay
#20 . 1+x+% = (1,1,1,0) = oy
i x+f + 2 = (0,0,1,1) = ap
X2 1+x+2 +2 = (L,1,1,1) = 3
¥« 1+ 42 = (1L,0,,1) = oy
e + 2 = (1,0,0,1) = o

In obtaining the powers of the elements it should be remembered that

each non-zero element of GF(2%) satisfies x2m "1 _ 1. since m = 4 we have

x15=lc

Thus for example '
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ag = (x6)3 = xls = XB ah
02( = (x6)5 = x}O = xo = (1,0,0,0) oy c

It is now easy to calculate the matrix M* given by (4,2). For example,

(0,0,0,1)

§
[}

the seventh rov 18 (o, o3, a@) or (0011, 0001, 1000). Tus

[1000:100021000
0100:000150110
0010:00114+1110
00013010131000
11005111150110

_011051000511103

,001150001§1000L

M¢=11101:001150110

:10105010131110
010131111:1000
111031000;0110
01115000151110
111130011:1000

'10113:0101:0110
1001°:11211:51110

where the vertical divi-sm separate the parts ?mi?g from c, o? and CP ..
From M* we can drop the last null column and the 1l-th column which is
identical with the 10-th, The 10x15 matrix of rank 10 so obtained we can
take as the matrix A of Theorem 1., From what has been shown in section
4, this matrix has the property P(6) that any 6 row vectors are independ-
ent, Using operations (i) and (ii) of section 2, we can then transform
A to A¥ where

e o 120

- C

e
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vhere I10 is the unit matrix of order 10, and C is the 5x10 matrix giﬁen

by
™1 10110010
(001111000101
c=}1101101110
0110011111

| 112010110001 .
Teking T —
c*=[c,15_7

ve have a matrix of order 5x15 whose rows generate under vector addition
(mod 2), the group of 32 sequences which constitute the letters of the
alphebet of the required 3-error correcting (15, 5) binary group alpha-
bete It is easy to verify that of the 31 nonnull sequences 15 have
weight T, 15 have weight 8 and one has weight 15, which checks with

Lemma 1,
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