TSI T JTRNTFIFE, o il . g L

TSI T T

LR T P e TR

_. A Tﬁthmque f@r
__.;igh-PenCo rmance .
Data Compressaon e

Terry A." ﬁ*élch, Sperry Research Center’

Bata stnred on -disks: *and tapes of transferred over com-
mumcatmns links -in commercial computer systems generally
j_cnntams signiificant redundancy. A mechanism or procedure
“which: recodes the.data to lessen the redundancy couid possibly

:-'3'.":5_"-'dc:ruh!e or iripie the effective data densitites In stored or com- .
-'Fhis algorithm avoids many of the pmblems associated with

‘7 municated data, “Moreover, if:.compression is automatic, it can
alsoaid in the rise of software development costs. A transparent
_m-:'mmpressmm mechanism could permit the use of *‘sloppy’’ data
strugiures, in that empty space or sparse encoding of data would
nm gre:atty expand the use of storage space oI transfer time; how-

aver; that reguires a LMﬁ COMPIesAIon, procedure.
Soveral problems encouniered whenl common compression

- maethods are integrated anto vomputer 3ysStems have prevented

’ihe_md&pread use of automatic data compression. For exarnple
_ i} POSI runtime execumn speeds interfere in the attainment of
".-"-;1;:'»'51'15 high-data rates* {2} fTost compressmn ‘technigues are not

fiexible énough to’ pmce.ss dit‘ferent types of redundancy; (3)
blocks of C{}mi}rﬂssed data that’ have unpredictable lengths pre-
sent smrag.e spaca management prahlems. Fach compression

e “ﬁus article was written wh:le Wetr:h Y emplnyed at Sperry Research Center; he
15 nuw mu;ﬂa;md th Dlgltal anmpmem Corporaticn.

OB L T I -+ DO18-9162/84/0600-0008801.00 © 1384 IEEE ..

strategy poses a different set of these problems and, cunsequent-f."'
ly, the use of each strategy is restricted to applications where its

inherent weaknesses present nu critical probiems,

This articie 1n£rudur;t:s a new compression algorithm that is
based on principles not found in existing commercial methods.

older methods in that it dynamically adapts to the redundancy
characteristics of the data being E{}mprﬂssed An investigation
into possibie application of this algorithm yields insight into the
compressibility of various types of data and serves 1o illustrate
system problems inherent in using any compression scheme. For
readers interested in simple but subtle procedures, some detaﬂs
of this algerithm and its implententations are alsa described. -

The focus throughout this articie will be on transparent coin-
pIession in whxch the computer programmer is not aware of Lhe
existence crf cﬂmpressmn except in system performance. This
form of compression is “*poiseless,’” the decompressed data is an
exact replica of the Input dgta, and the compression apparatus is
given no special program information, such as data type Or usage
statistics. Transparen-:}r is perceived to be important because put-
{ing an extra burden on'the application programmer would cause

k
COMPUTER

PR R e o STl

ot et
P
B S | L N)

fadarl e
et

B Rl i e

“-development costs which would-often exceed the value of

¢ campression. As illustrated in Figure 1, COMpression is

viewed ag being very similar to a communications channel
in that it codes a sequence of bytes inio an artificial format

for. 1mpmved ph}rsmal handling and Jater decodes the com-

pressed iinage back mm a replica of the original message.

- The data mmprﬁsmn described by this model 15 a

raw:rmh!e process thatis unlike other forms of ''data com-
1o pression’’—such asdatd reduction or data abstraction—in

" "ﬁhtﬂh ﬂﬁ;ﬁ ii dﬁim wrﬂmn m some relevance cri-

'?‘{‘h:s artmie faﬂuses on mmpm:sinn nf bmh text and
fimeric datammtﬂrmmed—-m commercial computer ap-

“" plicatons. Whereas previous. articles have placed par-

:'..'.f.-_.;_.,,_iurms transparent compression.

'_ . .', [.
" . e IR
: AP Y

ticular emphasis on text compression in their discussions
of compression algorithms for computer data, i-¥ this arii-
cle will cover more of the systems aspems uf mtegratmg a
COMPFession algnnthm into & mmputer system with h:gh-

perfmmance SLOrage dﬂvm | e

INPUT I
Susivmmimimemy COMPRESSED
$YMBOLS - | i
COMPRESSION [AA
STREAM. :
OF .
:numms
DATA STORAGE,
MEDIUM | coMMUNICATIONS
LINES
OUTPUT
SYMBOLS OORES

«——| DECOMPRESSION =1
ORIGINAL 2 -
DATA -

i el

Figure 1. A model for 2 compression system that per

ﬂ:&-l

Types of redundancy

Four types of redundancy can be found in commercial

data. Redundancy hereis confined 1o what is observabie tn -
a data stream {without knowledge of how the dataistobe

interpreted). Redundancy in the form of unused data or
application-specific correiations are not considered here.
For illustration, types of redundancy will be described as
they might be found in two Kinds of files: English text and

manufacturing party inventory records (see Figure 2}, The - -
redundancy categories deseribed are not indepaﬂdem. but -

‘overlap 10 s0me extent,

Character distribution. In a typical character string,

sorne characters are used moie frequently than others, = =i

Spemficaliy, in eight-bit ASCII representations nearly
three-fourths of the oogsible 256-bit combinations may
not be used in a specific file. Consequently, nearly two bits
of each eight-bit packet might be saved, for a possible -

_lﬁ-percent ‘space/time savings. In English text, the
‘characters occur in a well-documented distribution, with e
. and “space” being the most popular. In an inventory
" record, numeric valugs are very common-~the existgnce of

binary or pamkad-d:mmai numbers can shift the statis-
tics—and constrainis on fieid definition <can cause

character distribations to vary signifi jcantly from fileto:

fiie. For example, the chioice of whether to use aiphabetic
or numeric values 1o identify warehouse sites can shifi the
distribution in the inventory file. Likewise, the extent to
which descriptive text appears in the inveniory records will
infiuence the average number of bits needed per character,

1

Character repetition. When a string of repetitions of a ...

single character occurs, the mMessage can usually be.en-.
coded more compactly than by just repeating the character

symbol. Such strings are infrequent in text, occurring as
blank spaces in place of tabs or al the end of lines.

However, in formatted business files, unused space 1s very
common. An inventory record will frequently have SLIINgs
of blanks in partially used alphabetic fields, strings of
zeros in high-order positions of numeric fields, and
verhaps strings of null symbols in unused, fields. Graphical
images, especially the line drawings of business graphics,
are mostly composed of homogensous spaces, and their

;i

o o . ; YARIABLE-LERGTH TEXT
s N - PART NAME: HEX NUT % %20 ~ ENGLISH CHARAGTER
sk DESCRIPTION: STEEL, STANDARD THREAR OGCURRENCE DISTRIBUTION
{4 COLOR COBE: « - BLANK FIELD
th .
WAREHOUSE: 45" STREET - SAME NAME FREQUENTLY

STORAGE SITE: 483
HU.&HTET‘I' H‘i ETHEI.{ {Iﬂiil

" HEQCCURS IN THIS FILE,
NUMERIC FIELDS

‘ HEHHHER FIHHT m}m

S Jurie 1984

LIMITER VARIETY OF CHARAGTERS

A i

- Figm._ﬂgTypnﬂ"ﬁi_rﬁﬂuﬁdant code in a manutacturing pars invanthry record. | |

increasing integration into textual data can pose a com-
pression challenge.

High-usage patterns. Certain sequences of characters
witl ceappear with relatively high frequency and can
therefore be represented witht relatively fewer bits for o nct
saving in hmaiapaca Ia English, a period {ollowed by two

spaces 15 more common than most other three-character

caalhmauaaa aad aauid therefore be recoded to use fewer

it Many letter pairs, such as ZE, are more common than
| 'tha individual letter prababllltlaa would imply and might

tharai‘ara be recoded with fewer bits than the two-charac-
ter symbals used tagathar LI':(EWIE{S, uniikely pairs, such
as GC, would he encoded with very Jong bit combinations
to achieve better bit utiiization. In particular instances of
text, certain key words will be used heavily. For examplée,

- the word “‘compression”” appears frequently in this article;

consequently, - if this article were made into a system file,

 the word “compression’ would warrant use of 2 shorter
Ceeeode, In inventory records, certairn aiaaaﬁara such as

warehouse names are extersively reused. Numeric fialds

S 1'-."~'-';_i-.f'_r:antaa’a prefeﬁad sequences in the sense that they contain
s gty seduiéiices of digits; with no letters or special symbols

mtermixed. These coiitd be encoded at less than four bits
per digit, rather than the five to gight bits needed for

--general text,

Positional. redundancy. I certain characters appear

- :.-s.-_--caaaiataatiy at a predictable place in each block of data,

then 1hay are at least partially redundant. An aaampia of

..~ thi¢ is-a raster-scanned picture ¢ontaining a vertical line;

the vertical line appears as-2 biip in ihe same position i

i oo, €ach scan, and could be more compactly coded. In inven-
57 “tory filés, cerfain record fields may almost aiways have the
. same entry, such as a ‘‘special handling”’ field which

almost always has-t*horie” in it. Text, on ihe other hand,
has virtually no positional redundancy in it.

These four. typaa of redundancy overlap Lo some extent.
For example, many awaatar:,r numeric fields will contain
small integers preponderantly. These could be compressed
as a smali group of frequently used sequences {the in-
tegers), as instances of zere strings ik front of the integer
values, as a weighting of the character fraquaacy distribu-
tion toward zeros, of asg pn::-amc-aal bias, in that particular
ficlds will almost always have numeric values with many

- nigh-order zeros. The point here is that almost any-com-
- "praaalaa maahaalam can aapian that type of redundancy.

The intent hara 1a nat 10 precisely analyze the com-

L .- ponenis of redundancy, tut rather to provide a better view
of the opportunities and challenges for a COMPression

algorithm.*

*Other T.}"'pﬂs of redimdancy exist, beyond those listed here, for example in
digitized voice waveforms. ‘There is-extensive redundancy in voice, but
much of it is best seen in the frequency gomain rather than the time domain.

‘Some voieedata coliected can be eliminated by dropping unnecessary preci-

5101 i certain contexts, but this technique should be secn as data reduction
rather than data compression because it js not reversible. In genaral, the

. _methods used o compress alphanumeric data are not useful on voice, and
s mca versa {except perhaps for blank m_tenag an;:admg}

'1"'-.".|'."l'af| '

s S e
N T B - '!\. .t ?-'

.Mathada of aampraaa:an

Tha preceding discussion of radundancy types prawdaa
a basis for comparing several praata:al COMPTESSIOn methi-
ods. More thaarahaal COMparisons ara prawdad by Storer
aad Szymanki.*

Huffman coding. The most popular compression meth-
od is to transiate fixed-size pieces of inpul dala Into
variable-length symbols. The standard Huffman encoding
procedure prescribes a way to assign codes 10 input sym-
bols such that each code length in bits is approximateiy

log ; (symbol probability)

where symbel probability is the relative frequency of oc
currence of a given symbol {expressed as a nrobability).
For example, if the set of symbois (the input ensemble} 15
chosen to be the one-byte ASCII characters (a very typical
case) and if the blank character is used one-eighth of the
time, then the blank character is encoded info a three-bit
symbol. I the letter Z15 found to occur only .1 percent of

‘the time, it is represented by 10 bits.

In normal use, the size of input symbols is limited by the
size of the transiation table needed for compression. That
is, a table is needed that lists each input symbol and its ¢ot-

responding code. 1f a symboi is one eight-bil byte {(as 15

common), then a table of 256 entries is sufficient. wuch a
table is quite economical in storage ¢osts bud limits the
degree of compression achieved. 3ingle-character en-
coding can cope with character distfibution redundancy,
it not the pther types. Compression eould be improved
by using input symbols of two bytes each, but that would
require a table of 64K entries at a cost that might not be
warranied. Parsing the input data into symbols that are
not byte-aligned aaah as 12 bits, is not likely to improve
COMPression affactwaaaaa and would complicate system
design. ‘ .
A second problem with Hutman encoding 15 the com-
plexity of the decompression process. The length of each
code to be interpreted for decompression 15 NOL Known -
il the first few bits are interpreted. The basic method for
intepreting e¢ach code is to interpret each bit in sequence
and choose a transiation subtable according to whetherihe
bit is a one or zero. That is, the transiation table is essen-
tially a binary tree. Operationally, then, a logic decision 15
raada for each code bit. In working with a disk drive that
has a 30M-bps transfer rate, the decompression logic must
cycle af thap rate or faster to avoid creating a system bottle-
neck. Decompression at that rate is possible but not sim-
ple. In general, daaampraaalaa with variable-length sym-
bols gives a cost/ part‘armaaaa disadvantage whenever the
data volume is high. »

A third problem with Huffman aaaad:a; is that we need
1o know the frequency distribution for the cnsembie of
possiple iniaut symbols. in the normal case of single-
character symbaols, character frequency distribunon in the
data stream is the type of distribution use. Such a distnbu-
tion is known and is probably reasonably stable for Eng-
lish text. However, the distributions for data files are very
application specific and fijes such as object code, source
code, and system tables will have dissimilar characteristic
distributions. While it might be possible to have a set of

COMBPUTER

R R el sy sl Bdieurd oF o=yl Py b) Bl bl A

KK
- W

generic translation tables to cover these various cases,
problems arise in having the decompressor use {he same set
of tables as the cOmpressor. A COMMOR solution is 10
analyze each daia block individually to adapt the characier

diﬁii‘ibﬂill}ﬂ uniguely to that block., We must make two
. pagses aver the data: (1) a pass 10 COUnt Characters and per-
- formm A sort operation v the characier table, and (2) a pass

for encoding: Fhe derived translation table must be con-

veyed with the comptessed data, which deiracts from the-
- COMPTESSION effactiveness and/orstrongly restricis the size

" of the figttion table: This adaptable approach 1s accept-
. ahle if high transfer rates through the compressor are not
. required and'if thie datd blocks beinigcompressed are very
“ arge relative’to the size of the transtation table.

Run—len:ﬁgiﬁ_'éncnﬂ'ihg. Sequences of identical characters
can be encoded as a count field plus an identifier of the

repeated character, This approach is effective in graphical

images, has. vlrtuali}fna value in text, and has moderate
value in dat:_'a'__ﬁ_leé_.:.'The problem with run-length encoding

. for character sequences, intermixed wi;_k_;xﬁi_ﬁ_i}:j;f data is in’
' distinguishing the count fields from normal characters

- which may have thé same bit pattern. This problem has

ceveral soliitions, but each one has disadvantages. For ex-
ight be used to mark each run

ample, a special character mi
of ﬂharactgﬁ,ﬁwr{i'&h is fine for ASCIltext, but not for ar-

bitrary hit._"pat_te,rns such as those in hinary integers.
Typically, three chiaracters are needed to mark each char-

B

..... : - h

. acter Tun, SO thiis encoding would not be used for runs of
" hreeor fewer Characters

Programmed. compression. While programmed cOm-
pression does not Caast the transparency constraint desir-
able for general-use systems, it 15 discussed here to show

- the types of techiniques used, The programming is generar
S lyedone by the -_a_ppli'cgﬁbns p;‘qgr%:;i}[;}gf:r'_ﬂr data manage-

wient system. In formatted data files, several techniques
are used, Unused blank or zero spaces are eliminated by
making fieids variable in length and using an index struc-
wure with pointers to sach field position. Predictable field
values are comipactly enicoded by way-of a code table—
such as when Warehouse names are given as integer codes
rather than as alphabetic English names. Each field has its
own specialized code table that deals with positional
redundancy. Since programmed COMPIEssion cannot ef-

fectively handle character distribufion redundancy, 1t is a

- nice complement to Huffman coding.
o Programmed compression has several serious disadvan-
.tages. It introduces increased program development ex-

penses; the type of decompression used requires a knowl
edge of the recorg structure and the code tables; the choice
of field sizes and code tables may complicate or inhibit
later changés 1o the data structure making the software
ihore expensive 1o maintain. Perhaps most important,
programmiers-wilktend to avoid the decompression process
because it is relatively slow and, herefore, will work with
data in main miemory in its compressed format, which

confuses and complicates the application program.

Aﬁaptiv_e't_ﬁiﬁ:ﬁ_iﬁéssi’nn. The Lempe1~Ziv5+ﬁ and refated
.a!gm*ikthm's" anriveit variable-length strings of input, sym-

June 1984

bols into fixed-length (or prediciable length) codes. The
symbol strings are selected so that all have almost egual
pr_gbahility af ogcurrence. Consequently, strings of fre-
guendy occurring symbols will contain more symbols than
4 string having infrequent symbols (se¢ gxampie in Table
1).. This form of compression is effective at exploiting
character frequency redundancy, character repetitions,
and high-usage pattesn redundancy. However, it is pot
penerally effective on positional redundancy.

This type of algorithm 13 adaptivé in the sense that it
starts with an empty table of syrabol strings and builds the
able during both the compression and decompression
nrocesses. 1hese are one-pass pracedures that require no
prior information about the input data statistics and ex-
ecute in time proportional to the length of the. message.
This adaptivity results in poor compression during the in-
itial portion of each message; asa resuit, the message must
be long enough for the procedure to build enough symboi
frequency experience (O achieve.good compression over
the full message. On the other hand, most finite im-

-plementations of an adaptive algorithm jose the ability to

adapt after a certain smount of the message is processed.
If the message 1§ ot hOMOZEeneous and its redundancy
characteristics shift during the message, then compression
efficiency declines if the message lengih significantly ex-

ceads the adaptive range-of the compression-impiementa- .. -

10T, Lo

Table 1. A compression string tabie with alphanumeric¢
character strings' that are encodead into 12:bit codes. 3]
this exampie, infrequent letters, such as £, are assigned
individuatly to 2 12-dit code. Fraguent symbeols, such as
space and zero, appear in long strings which in practice
can exceed 30 characters in length. Good compression is
achieved when a long string is epcountered in the lnput, it
is repiaced by a 12-bit code, effecting signiticant spatce
savings. ' . |

SYMEOL : L ' _
STRING | . CODE
A : 1
AB . " 2
AN ! = 3
ANT 4
AD 5
: ~ 6
B : , 7
0 : 8-
Do . e g
B - 10
B 11
Wl g 19
LaEe] ok : ; " 13
el 14
labal i 15
C 1 16
o ‘ 17
{00 i . 18
B | 19
GOoa ¢ 20
333 _ 4395
b =Dlank character

11

The tumpressmn procedure discussed here is called the
LZW method. A Variation on the Lempel-Ziv procedure, 5
it Tetains ‘the" adﬂptwe properties of Lempel-Ziv and

7 achieves ghiblit the same compression ratios in sormal

“ L eommercial computer applications. LZW s distinguished

SRR Sy fts very simpte logic, which yields refatively inexpensive

implementations and the potential for very fast execution.
A typical LZW iinplementation operates at under three
clock: cycles: per symbol afnid-achieves acceptably good
COMPreEssion on- messages in the magmtudc of ten thou-

vy “ﬁﬂ {‘:}mlﬁtﬁl'l 'Iﬂ !’Enﬂth

Cﬂmpressiﬂn paramﬂm. The pre:.:edmg discussion of
redundancy and compression can be summarized by point-

* irigiout-the parameters that influence the choice of a com-

pression strategy, The redundancy: type found in a certain

application is important, but predictability of redundancy
type is also importani. An adaptive capability in a com-

pression procedure would: be of livtle benefit for applica-

- tiohs with predictabie fedundancy such as in English texe,

but it 'would be valuable for business files. System data

transfer rates determine if a one-pass procedure is needed -

for speed; by if e greater overhead of a two-pass ap-

T proach ¢an be justiffed by better compression results. The

iength of the message being {ransmitted or retrieved has
sOme. Afportance because adaptive fechniques are awk-

"war& or ineffective on short messages.

“1t-is more difficult 10 analyze the compression costs that

ref}ect human involvement. Nonadaptive algorithms re-

L qu:re prm:rr knﬂwle:ige of the data characteristics, which
i are perhaps provided by mstinal classification of messages

T e categories having preanalyzed fedundancy profiles.

' OF course; programmed compression offers the greatest -

density improvement at the cost of very high development
and software maintenance costs.
The fﬂtuﬁ of this anicte is {}n the pmblems found in con-

i "‘mﬁgl‘lf:ﬁt dikks preclus:le extensive runtirne overhead, while

the diversity of the data stored essentially requires an
adaptive procediire. The use of short segments on a disk
complitates the use of at’ adaptwe: approach, but this is

‘betoming less important as data block sizes on disk are in-

créasing. The LZW method seems to satisfy these re-
guirements better than other compression approaches.

- Therefore, its characteristics will be'used in the following

- discussion; which poinis out the opportunities and prob-
;gms i}f mmprﬂssmn m data stufﬂgﬂ

i

Tah!&. 2. Compression results for a variety of data types.

DATATYPE

English Text 18’
Cehal Files e 2106
Foating Point. Arrays L 1.0
Fﬂrmatteﬂ Sr.:isaﬂhf;c Data 2.1
. ngram-ﬂaurcemﬂa b 2.3
Opject.Goge . .. e 1.5

COMPRESSION RATIO

TR

Observed compression results.

Effectiveness of compression is expressed as a ratio
refating the numbet of bits needed to express the message
before and after compression. The compression ratic used
here will be the uncompressed bit count divided by the
compressed bit count. The resulting value, usually greater
than one, indicates the factor of increased data density
achieved by compression. For exampie, compression that
serves to eliminate half the bits of a particular message is
presented #s achieving g 2.0 comnpression ratio, indicating
that two-to-one compression has been achieved.

Compression ratios, developed by software simulation,

-are given in Tabie 2 for severat data types, Many of these

observations came from compression of backup/recovery
tapes from a Sperry Univac 11008/60 ‘machine used in a
scientific environment. Most of the samples involved
several different files and covered 10% to 107 bytes each to
provide meaningfyl averages. Several versions of Lempel-
Ziv compression algorithms were used; however, since the
various algorithms produced results that were consistent
to within a few percent, no attempt is made here to
distinguish the specific algorithm used for each case.

‘Engiish text. Text samples for compression were ob-
tained from ASCII word processing files in a technical en-
viropment. Results were reasonably consistent for simple
text, at a compression ratio of 1.8. Many word processing
files, however, compressed better than that when they con-
tamed figures, formatied data, or presentation material
like viewgraphs. Surprisingly, long individual documents
did not compress better than groups of short documents,
indicating that the redundancy is not due very much to
corrciation in content. For comparison, Rubin? achieves
up to a 2.4 ratio using more complex algorithms. Pechura?
observed a 1.5 ratio using Huffman encoding. These com-
parisons are not very reliable, since the subject texts may .
have dissimilar properties.

Cabol files. A significant number of large Cobol files
from several types of applications were compressed, Pro-
ducing widely variable results. Compression depends on
record format, homogeneity across data records, and the
extent of integer usage. These were eight-bit ASCIi files,
50 the integer data would compress very well. A side ex-
periment showed that one third to two thirds of the space
in some of these ffles appeared as stiings of repeated iden-
tical characters, indicating a high fraction of blank space.
After allowing for that much biank space, there normaily
was a further (wosto-one compression within the useful
data. Restricted character usage probably caused two
thirds of this latter two-to-one compression, with repeated
character patterns giving the rest,

Floating point numbers. Arrays of floating point
numbers look pretty much like white noise and so they
compress rather poorly. The fractional part is a nearly ran-
dom bit pattern. The exponent does yield some compres-
sion when most of the numbers have the samne magnitude.
Some floating point arrays expand by 10 percent goIng
through the compression algorithm, when the exponents

COMPUT £R

-'f't'i'g.'i-:""{rary widely. Expansion under an adverse data pattern can
. accur under almost any adaptive compression method,
Randomized bit patternis usuaily cause this effect, since

ihere are 1o redundancy savings 1o offset the overhead’

that is inherent in coding the choice of parameter waiues
gxplicit or implicit in the procedure.

" Formaited scientific _data; Most data used by Foriran
programs tended to COMpPress about 50 percent. This data
included input data,. primarily, integers. It also included

.pfint files, which were ASCIL coded, Most of these files

<" 4¥é short, so our 20-file sample did not encompass a Jarge

ﬁﬁaﬂﬁt}" of data,.

System log data, Information describing past system ac-
livity, such.as jobstar and stop times, 18 mostiy formatted
integers and is therefore reasonably compressible, This log
data is used. for recovery and constitutes perhaps 10 pex-
cent of the data stored on backup/recovery tapes. It tends
1o be in a tightly packed, fixed-length format, so the com-
pressioti achieved is due to aull ficlds and repetition in the
data vaiues. . - - L

ST Programs, Source code can-be compressed by a factor
of befter than two. It can be compressed better than text
because words are frequently repeated and blank spaces
are introduced by.the source code format. Highly struc-
tured programming yields source code with greater corm-
pressibility t_ha.'n the average 2.3 factor cited here. Object

o code, on the other hand, consists of arbitrary bit patierns
<o and does pot compress as well. Uneven usage of op codes

.:._j-_-;.j:.__ ¥ dincgmp}gte H{iﬁf,aﬁﬂn ﬂf disp}acﬂmt‘iﬂt ﬁﬂ?ldﬂ Wﬂ-uld

" account.for-most.of .the compression achieved. Relocat-
able code and absolute code differ in compressibility
depending on the treatment of bian king for empty vanable

- areas. Actual program files in a development organization
" weere fousnd to he mixtures of source, relocatable, and ab-

““sottite codes. These mixed files were: compressed on the

i ‘average by a factor of two.

Character size. Sometimes data 1s recorded in nonstan-
dard character sizes, Qur Sperry 1100760 has a 3&-hit word
and so, at times, has six-bit, eight-bit, and nine-bit data,
The measurements cited in Table 2 were compressed using
nine-bit characters throughout. When eight-bit ASCH
symbols were being stored in ftine-bit byies, the compres-

siofi Tesults were adjusted to refleft resuits as if they had
“rii beer sbserved on an eight-bit byte. That is, the observed
i dompression was 9/8 greater than the numbers shown in

7 Table2. The comptessed datd stream iS virtually the same
regardiess of whether the source data was in €ight-bit or

nine-bit* symbaois,; since length of e compressed image

depends on the number of symbols encountered rather:
than their encoding, Six-bit data compressed surprisingly
well when compressed on a njne-bit basis, because
repeated patterns, such as blark spaces, are word aligned
and have the same paftern on each ocCurrence, even
though that pattern is not meaningful when viewed on
nine-bit increments. As a side éxperiment, nine-bit data
~ was compressed as if it were eight-bit characters. Poorer
. ut not unacceptably poor compression. resulted. For €x-
" ample, a set of nine-bit files which compressed four-to-one
June 1884 ol

- - - H
- _I' - .. I':-| |

as nine-bit input symbols compressed about 2.8-to-one

when processed as & sequence of eight-bit chunks. Ali of
‘this evidence indicates thdt compression can be effective

even when dealing with mixéd character types.

Recovery tapes. Compuier backup/recovery tapes
{called secure tapes at Sperry) contain copies of active user
files. As such, each tape exposes a Cross section of data
used in its system, although that probile of active files may
differ from the profile of all files found on the system
disks. Compressing these tapes with the LZW algorithm
has produced sorherhing less than a two-to-one space re-

duction in sclentific installation and slightly better thana

..

two-to-one reduction in a program-development-oriented

instailation! From these results, we might expeci a three-
1o-one reduction in transaction-oriented systems wiere
formatted data predominates. .

System considerations

. “The avaiiﬁhi%ity of an appropriate COMpression method

does not assure an effective system. Several problems
oceur when integrating compression into existing com-
puter systems. These are described here in teyms of both

D blom type and impact on specific computer peripherals.

Unpredictable message length. The length of a com-
pressed image fora given Message is unpredictable because
it depends on the content of the message. We have po
assurance prior to COmMpression ihat a message will com-
press at all; in some cases. it -may even expand a litile.
Therefore, the space allocated for the compressed image
must be at Jeast as big as the space allocated for the original
message; this requirement is a complication on allocated
devices such as a disk. Further, an update {o 2 data record
that alters just a few characilers Camn change the compressed
size and may result in a required change in allocation—
even for minor update qpei*aticrns. Unpredictability in
length also impacts bandwidth requirernents; as a result,
data path capacifies have (o he gverdesigned to handie
peak demands.

. |
Erfor tolerapce. A characteristic of most reversible
compression systems is that if one bit is altered in the com-
pressed image, much of themessage is garbled. Therefore,

a given error rate may be acceptable for the transmission

of uncompressed data, but the same rale may be unaccept-
able for compressed data. Special efforts 1o detect errors

are needed, especiaily to catch any Srrors, in the compres-

sion and decompression processes. Note that a parity bit
added to each data character before compression would be

removed as redundancy by the compression process, sO
character parity has no value in checking the COMPressor.

Cyclic checks over. the entire message are effective, how-
gver,) ‘ , .

This intolerance to errors often limits the use of com-
pression. For example, digitized speech can tolerate ocea-
sional bit Josses, but compression turns these rrors 1o
cerions losses. On the other hand, since most corpmercial
data storage devices, such as disk and tape, have accept-
ably low error rates and there is ne atiempt to use their

i

13

UL L th

data with errors presen, compreassion works well in these
n:lrc:umstances |

- Block: size* Any compression method that adapts to the
statistics of the subject data and has a finite implementa-
- tion will have compression effectiveness sensitive to message
length, Short blocks are penalized by a start-up overhead
needed -to- convey subject statistics. Huffman encoding

methods, for example, must send a translation table with

the - mes’s’agé"tﬁ"”give the encoding for each character.
.-Lemi}ﬂ%w miethods are inefficient in early sections of the
S mgssage, wtl chufscter “strings are encountered that
repeat earher sirings. A t:fplcai LZW 1mplem¢ntauun uses

12 blt cn{les with e:ghtublt m;:fut symbals; early inpuis,

cause ﬂne code per symbol yvielding a 50-percent expansion
"1:1 the startaupy ;}Grtmn of the message. :

“Large blocks suffera loss in ef ficiency because the block -

""-'“ii’lacks stable statistics; this is a typical occurrence in comi-
" fiiercial computer data. For example, program develop-
P ment’files may contain intermixed blocks of source code,
Sk 'rﬁlm:atable object code, and load modules of machine
code. K translation table builf’ from redundancy statistics
- onthe Smirte code w111 pﬁrfnrm poorly on the object code,
U Which has much dzfﬁ:reni bit patterns. Note that much of
{he published theory ini the compression field assumes ar-
bitrarily iarge transiation tables and ergudm data sources,
nﬂlther of which occur in practice.
* Figure 3 shows typical curves of compression.efficiency
’versus block length for an LZW implementation. Note

o that” cumpressmn efﬁmency is determined by the com-

- ot
PR

L e
i b LRGN

et W S e A b e e e L e e .
T T e A A L DA R L e L e A Lt L L R R A AU R

SESNE A - T e Pa
EROMBRESS Gy P e r’r A PR
Fo Jge o -
25 o 4 e
s g..,..... WAL ,F'f E\ETES /,r A
E - jJ-. --__'~ . rl_..l"r E R | L..{L"ﬁ : g E
i 4 - P
§ . ey
Noe / / g I .
' —-— 5\ 'I.I / .. « . 1.
R RN ¢ - e 2
" A i AU s e e Lm f
4
‘E"' :. :'- ::.%
E .
- P,
£ e !
E' :;f:';r { - g
;. TSNS 0 JUAUIIN SRS TSN G
3} L TEh L A ;
m‘ " el _-::": il 1] LA "'i,;
E P ' SRR FE =
fE R A friid ! ¥
e a i
E;La.t R A 5 e i S i e P A L L A i i e ra&d.\.i-..:..'.mﬂ A i L o R b B, iy D i A A
F:g ure 3. The Effect nt btﬂck size on cumpfessmn Effictency
14 '

pressed block size and, as such, is related 1o the input
block size factored by the compression ratio. The curve
shown may be moved vertically up or down without loss of
meaning; the two-10-0ne compression ratic curve is siown
here for illustration. The diagonai lines indicate fixed in-
put block sizes as they would map into compressed block
sizes. Note that data which compresses very well needs to
be handled in larger blocks to obtain the highest compres-
sion efficiency.

The highest efficiency point shown in Figure 3—about
ok eight-bit bytes after compression—~is implementation-
dependent and can be adjusted. Howgver, since this curve
m&tché_’s a very convenient implementation, it will be com-
mon practice.. -

System location for compression, When using compres-

~sion an computer peﬁpher_ais, a significant sysiem con-

sideration occurs in deciding where to implement compres-
sion in the 170 path of Figure 4: in the device controlier,

_channel, of central processor: If the compression opera-
“tioti is executed in the device, it would be transparent 1o

software and its implementation could be adapted to
device characteristics. The compression operation in-

herenily requires some buffering because its rate of putting. -

out compressed data varies widely, depending on instan-
taneous compression ratios. That is, some pieces of a
rnessage compress beiter than others and a highly com-
pressible piece would produce a few ocutpul codes in place
of numerous input symbels. To reduce’the vananon in the
cormpressed data raie, a buffer of a few hundred codes
would be of value. If implemented in the device controller,
this buffering requirement might cause cost problems.
Another problem is in channel bandwidth. If data com-
pressible by a facior of three to one is sent to a 3Mi-bytes
per-second device, the channel inust deliver 9M bytes per
second. This peak rate requirement is variable—denend-
ng on compression ratio—so 1/0 channel sizing can no
longer be calculated directly from device 1ransfer rates.

if compression is executed in the channel, it would be
visible to operating systern software and would reguire full
message buffering in the channel controller {not a tradi-
tional design, but & reasonable one). The OS5 would issue
separate operations for compression and 1/0 transier, giv-
ing it a chance 1o see the size of compressed images before
the data is transferred to a device. Because of data storage
requirements, this approach would -probably be useful
only on selector channels. It does.allow .the device bus
transfer rate to be better utilized because compressed data
moves from channél 1o device, bui it also complicates
channel and OS designs.

if compression occurs i the central processor, 1t would
be made available to application software and would be a
TAIN-emoTyY-to-main-mermory operation. This type of
mmpressmn would improve 1/0 channel utilization but
would increade the main memary cycies required. Invoked
optionally by various software packages such as the data-
base manager, this type of c:ﬂmpreas.mn would not reguire
changes to the OS5,

Disk storage. Compression on disk is feasible because
the internal data format on disk is generally invisible to

b

COMPUTER

“users and can therefore be alterad to accommodate com-
pression. The potential ‘it an- éffectively doubiled or tri-
oled data transfer rat¢ on ‘ot off disk is very appeaiing for
iargﬂ'_i‘éﬂm;}utﬂr& Problems can odeur, howsaver, with the
. chiokee of block size and space allocation procedures.

7 Traditionally, disks have been used in part to read and |

e fairly small biocks of characters, such as 80-charac-
cer records. There aré several undesirable ways 1o do this
under a compressioh systems that involve storing transla-

. tion tables, but that complicates the sysien. Fortunateiy,

ke present trend invdisk subsystem design is to block data

i achieve Jarge records on disk‘and; ¢onsequently, better

o tilize disk bandwidth. This approach réquires a buffer

memory in the disk controfier and often-accompanies a
caching systewm: for. the.disk, The use of large biocks ifi=
troduces Soine write problems—in read-bafore=write
access-timé Joss and in recovery provisions—but these
drawbacks are present even in caching without compres-
sion and so are acceptabie.

~ Traditionaily, the OS directly controls space allocation
... on-disk by keeping a map of available space-and checking
i gAch New write request against the map to determine when

.;=_:-.-:-ﬁﬂd{:wher¢-spa::,e"'iﬁ_'ﬁﬁﬁﬁ.'i'lﬁh'ief.-‘ If compression is used in a

' mode transparent 10 the OS, this direct control is no longer
o possible. The alternatives are (1) to have the OS be aware

of compression. and map compressed images into disk
space and (2) to move space atlocation into the disk con-
troller. Both approaches have disadvantages that will pre-
ventquick incorporation of compression into disk storage.

i1 Tape storage. Tapes-seem ro-bé-a-good prospect for
i COMPression because space allocation 15 not involved (the
0% makes no attempt 1o determine the size of a tape before
jt'is filled) arnid data block sizes have usually been quite

i 7large in practice.: Problems occur, however, in read-

backwards operations and in intersystem __cnmpauhility.

- Read backwards, a {:ummﬁn}y "?g'tihi.réﬁ capability in 4
LT ape system, involves reading data blocks as a character

“ ctream in reverse order. Adaptive compression is inherent-
ly a one-way procedure, so reversed data biocks must be
stored in fiill before decompression can begin. If compres-
"gion occurs in the tape controller, butfering must be ¢xe-

i cuted there also, which is not normal in tape subsystems.

" Tapes are commonly used for intersystem data ex-
" change, so the use of compression can cause compatibility
problems. While most high-perforiance compression will
+.probably.be executed in hardware, it is always possible to
iidecompress with software. Consequently, if occasional

‘- tapcg are. carried 1o sysiems without compression hard-

. ware, they can be read (siowly} through sofiware decom-
pression: Gompression gives all the system appearances of
having a higher density tape drive, except that higher
- media density '{:annm be reversed using software.

i e |

Communications. For years, compression has been
commonly used in special communications applications

such as facsimile.'Adaptive compression pas a bloack size .

probiem in general computer communications, however,
because typical interactive use involves messages of a few
hundred characters or smalier, Compression looks very at-
tractive for transferring large fiics. For commusnications
use, software can be ignorant of the existence of compres-
sion, so implementing it in the line controiler is ap-
propriate.

. .S}fﬁ!ﬂmﬂwidf application. As the prgc:edin,r;; sections im-
oly; the probiem with providing compression throughout
a computer system is the divergenos in meihods needed for

each device. Communicitions. compression. is best ime
plemented in the device controiler, 1ape COMpPIeEssIon 1%

perhaps bést i the 1/0 changnel, and disk compression 15
best in the processor. Each application. involves certaii
systemn difficulties that inhibit immediate utilization of
compression and the dissimilarity of those difficulties will
probably fuither delay an integrated system-wide com-
pression capability. - ’

LZW compression aigorithm

3

© The LZW algorithm is organized around a translation

table, referred to here as a string table, that maps strings of

input characters into fixed-length codes (see example in

Table 1). The use of 12-bit codes is common, The LZW
siring table has a prefix property in that for every string in
the table its prefix string is also in the table. Thatisif string

oK. composed of some string w and some single character:

K, isin the table, then wis in the table. Kis called the exien-
sion character on the prefix string w. The string tabie 1n
this explanation is initialized to contain ail single-character
strings. .

The LZW string table contains strings that have been
encountered previously in the message being compressed.
it consists of a runaing sample of strings in the message, 30
the available strings reflect the statistics of the message.

L.7ZW uses the “‘greedy™ parsing algotithm, where the
input string is examined character-serially in one pass, and
the Jongest recognized input string is parsed off each time.

A rec:::gni_ze_d string is one that exists in the string table.
The strings added o the string table are determined by this -

parsing: Each parsed input string extended by its next in-
put character forms a new string added to the gtring table.
Each such added string is assigned a unique identifier,
namely its code value. in precise terms this is the
algorithm: . b |
initialize table to contain single-character sirngs. s
Read first inpu!l character —prefix sirng

INSTRUCTION | gt WA —
- MEMORY

170 ' DEVICE
O e [§——p! DEVICE

4

CONTROLLER

| L PROCESSOR 1

- Figutg 4. A ::ﬁm'ﬁutmﬂi'r 11O data path from the instruction processor to deﬁces such as tape ot ¢isk.

Jupp 1964
4o

Step:-..Read nexi input character K
it nosiich K {input exhausted). code (w) —owdput; EXIT
If wk exists in string table: wk-—w; repeat Step.
als& -:.:H rmt in- string table: code (w) —oulput:
wK - string table.
K- repeat Step.

and the g;;i:_gggegi_l_ string wK is tested to see if it exists in the

Tabils 3. A string tahla fur tha exampla in Figure 5. Thﬂ string table is

initishzed with thiee code vaiues: for the three characters, shown

above the dnttad I‘ina. cude values. are. aaalgnnd insequence to: naw .
i ST | __stmplc its implementation. can be very. {ast.

strings.
TABLE . TABLE
P : 3
B Coi AR B
g g -
8 55 © 8
g Ba . g
jo. e i 10
11 10a - 11
12 - - iia 12
':,mpur T [
:"'-E?MB{]LS 2 b a b v b ab a b3 3 a a a a 3
. GUTPUT .‘.l* -E T El 5 g | T 16 . 1 ™
CCDES
NEW STRING 4 5 T BIE
ADDED TH S
TABLE

Figure 5, A cnmprasﬁlnn exampte The input data, being read from jeftt

to right, is examined starting with the first ¢haracter a. Since no

“i:: matehing string longer than a exists in the table, the code 1.is cutput

“iedor this siring and the extended string abis put in the tabie under code

'--'.32';555{-}'4 Then bis used to start the next string. Since its extension ba ls not

~inthe table, itis put there under code 5, the code for b is outpuit, and a
_startﬁ ih__e___naxt string: . This process contipues straightforwardly.

IH!’U? 1 2 4 3 5. @& i 1t 11
EEHEE ¥ ¥ v V. ¥ V'V v ¥
SR b ib ¢ - 2a Bb 2 1z 13a
) v ¥ ¥ ¥
: d ¥; 23 a 13
R |) v
OUTPUT B b -
DATA & a - B ab ¢ ba “hab a aa aaa
STRING 4 .5 8 . 19 .
ADDED | _ _
TG TABLE 5 R 8 H

At each exﬁcptiﬂn of the basic step an acceptable input

StTiRg has Been: parsed aff. The next character Xis read . -
bet is used.

‘Figure 8. A dacﬂmpresstnn axample. Each ﬂnda is transiatied by recur
sive reptacement of the code with a prehx code and, extension

character” from the sirmg table (Table 3). For example, code 5 is re-

. :fplacaf! by cnc{a Z-and 3, and then code 2 is rapiaced by b.

.I-\,.: .- '-'.

.':_'.':: .5.:15 #y

string table: If it is there, then the extended string becomes
the parsed string w.and the step is repeated. If wK is not in
the string table, then it is entered, the code for the suc-
cessfully parsed siring w is put out as compressed data, the
charaeier K becomes the beginning of the next string, and
the step is repeated. An example of this procedure is
shown in Figure 5. For simplicity a three-character alpha-

This algﬁr:t.hm makes no real attem pt to optimaily select

-Stnngs ‘for the string table or optimally parse the input

data. It produces compression results that, while less than
ﬂpumum are effective, Since the algorithm is clearly quite

The principal.concern in Implementation. is storing the
string tablc, To make it tractable each string is repre-
sented hy its prefix string . identifier and extension

" character, 5o each table entry has fixed length. Table 3 in-

cludes this aiternative form of the table for the compres-
sion exampie of Figure 5. This form-is well suited for

. hashing methods, ‘and some type of hashing is likely to be
. used uniil true associative memories are: availabie in this
size.

T

Decompression. The LZW decompressor logically uses -
the same string table as the compressor and similarly con-
structs if as the message is translated. Each received code

- vaiue i§ translated by way of the string table into a prefix

string and extension character, The extension character is
pulled off and-the prefix string is decomposed into its
prefix and extension. This.operation is recursive until the
prefix siring is a single character, which completes decom-
pression of that code (see Figure 6 for an example). This
terminal character, ¢alled here the final character, is the
left-most character of the strinp, being the first characier
encountered by the compressor when the string was parsed
out.

An update to the stnng tahle is made for each code

received (except the first one). When a code has been
transiated, its fimal character is used as the extension
character, combined with the prior string, to add a new
string to the siring table. This new string is assigned a
unique code value, which is the same code that the com-
pressor assigned to that string. In this way, the decom-
pressor incrementaliy réconstrucis the same string table
that the compressor used. L
This basic algorithm can be stated as follows:

Decompression: Read first input code — CODE -~ 0LDcode:
with CODE = ¢ode{K} » K —output;
MNext Code; Read next input code —CODE — INcode;
y If ng new code: EXiT. else:-
Next Symbol: 1t GCODE =code{wi} K--output;:

cotte{w - CODE:
Repeat Next Syinbal
Else if CODE =code{ K} & — output; .
. ULDcode, K --string
. ' table;
" lMcode — {}LDBU{.‘JB
Repeaat dext Code.

Unfortunately, this simple algerithm has two compli-

_catmg problems. First, it generates the characters within
each string in reverse order. Second, it does not work for

an abnormal case. String reversal is straightforward and

“can be done in several ways. For this-description, a push-

L

- COMPUTER .

ff'duwn LIFO stack for output characters, is assume:d which
will be emptied out at the end of each string. -

The abnormal case occurs whenever an input c:.haractcr
smng cofitains the sequence KwKwkK, where Kw already
- appears in the compressor string table, The ¢compressos
will parse oul Ke, send code (Kw), and add KwkK 10 its
" iting table. Next it will parse out KK and send the just-

" generated code (KwK). The decompressor, on recewing

code (KwK), will 1iot yet have added that code to its string
table because it dioes NOL yet know-an exiension character

fot the pitor string: This case ig.sein in Figure S and. Table

3 when code § is-‘genérated; ‘whii: the. decompressor. re-

ceives code 8 it has only just put l:n{ie ‘3 in-its string table
and code B: EE ‘wiiknown to it. When i Tindefined code.is

encountered; the-decompressor can execute transiation
because it knows: thiis code’s string is an extension.of the
priot siring: The character 1o De pui out first would be the

extension character of the prior string, which will be the.

final character of the current string, which was the final
character of the prior string, which was the most recently

transiated character. With these r::-::-mphcaunns reme:died :

::.;:_-_:_:.__'__thﬂ a?gﬂnthm is as fﬂllows. e

Ftrst mput cnd3mEDDE—DLDcnda
with CODE =codel#}, K—output,
K —FiNchar,
Next japut code — CODE —iNcode,
¥ o new codg: EXIT
if CODE not defined (special case).

© FiNchar--outpul]
... -OLDcode — CODE,

TR " ¢ode(QLOcode, FINChar) —~1Ncode;
ST Net Symboh 'iF B{mE a Code (k) Ko stack,

Next Gode: .

todelw) — —CODE;
Go g Next Symbol;

i GE}DE =code(K): K-~output;
K — FINchar;

I}u while stack not empty.

. Stack top-—output, PDF’ S{ack;
GLﬂﬂaﬂe 3. M-Elﬂl'tg taﬁiﬁ
!Ntndﬂ*—ﬂLﬁ{:ﬂdE a
Go to Next Cods;

Note that the string table. for decompression is accessed
directly by code vahi€, so nio hashing is needed, The basic
next-symbol step is a sumple RAM lookup that produces
pne output character. In normal implementations, the
final smgle-»chara-:te:r code transiation does noi require a

- - RAM read but is concusrent with a RAM write cycle, Asa

result, it 1s reasonably easy 1o achieve an implementation
that consistently produces one output character per clock

Implememauun The prmc;pal implementation deci-
sion is chioosing the hashing strategy for the compression
device. As wﬁh any hashing system, the ioad facior in the
t:ﬁble affects searchidengths, LZW usually uses 12-bit codes
and therefore rn..qulres up to 4096 table locaiions. Using an
S RAM for thetable gives a maximum load factor of (.5,
which produces short average search lengths. Further, a
few entries can be lost from the table with only mild
degradation of the compression ratio, so codes with long
searches can be forgotten. A typical implementation
averages about 1.5 RAM accesses per input symbol as a
cnmpg{nmlse between speed, RAM size, and mmpraasmn

Jung 1984 :
E

efficiency loss. Bach outpul code ajso requires-abrout the
same time, counting the write cycle for the extended string.

The RAM access time principaily determines the clock
cycle. Every cyele invoives a RAM read (or write) followed
by RAM output cormparison and the setup of a new ad-
dress for a new cycle. For high-performance devices a
50-ns RAM might be used, yielding a cycle time of perhaps
65 to 75 ns. Of.course, slower logic can be used for lower
data rates. The logic structures for decompression are
essentially the same as those for compression, so the, clock
rate will be the same.

~ Typical hardware structures for compression ﬂnd de-

compression are shown in Figures 7 and 8, respectively.
The basic flow.diagrams are not explained here, but are
shown to indicate the general character and extent of the
data-path logic. The accompanying control logic is & sim-

ple state machine with a half-dozeq states in each case. The -

hardware and software 1mpl¢rnantatmns of 1LZW are
Sperry proprietary. - -

Compression performance depends on the compression
ratio-of the data being processed. As a rule of thumb, it
will take 1.5 cycles per inpuf character and per oulpul
code, depending on the hash sysiem used, For eight-bit
characters and 12-bit S}Fmbﬂlﬂ :

character rate (1.5 + {compression ratio) ~!) = cycle rate

Consequently, if a clock rate of 15 MHz is used at twwm- o
‘one compression, input data can be processed at 7.5M.

characters per second. Often more critical, however, is the
output transfer rate, since this often feeds a real-time
device such as a disk.

output byte rate {} + 1.5(compressionratiop) = cycle rate

To feed a 4M-bytes-per-second disk using a 15-MHz
clacked compressor, a compression ratio of only 1.83 can
he sustained: any higher compression ratio would starve
the output. To feed a 4M-bytes-per-second disk at a com-
pression ratio of three, a 45-ns clock cycie or a hash
strategy that gives an average search. lengih of one cycie
per character would be reguired. Since those are tight con-
straisnts, this indicates the performance boundanﬂs of the
system.

Mote that decompression is substantially faster than
compression, so its performance i not normally a bottle-
neck.

Software implementation of LZW is possible but signif-

icantly slower. Compression speed is very sensitive {o the

hash calculation time in the inner loep. Software hashing
is relatively slower and less effective than hardware
hashing, and generally needs to be hand-coded in machine
language. A typical tight coding will average around 40
memmory cycles per character and code, so COMPIEssion
speeds of 73K bytes per second are seen on a i MiPs
machine.

Algorithm variations. Several variations on the basic
L.ZW algorithm just described are possible. The mecha-
nism to reverse output strings could be built with a circular
buffer or straight RAM instead of a stack. The latter
would reqguire the decompressor sining iable 1o contain a
length count for each string. Logically, this is easily ac-
complished but adcgls complexity.

oniy the null string. In that case, aspecm} code is necessary
- for the first use of each single-character stting. This Ap-

= proach improves compréssion if relatively few dlffer:ni
“rsymbols occur In ¢ach message.

first codes-contdin less information because the string
table is refdtively émpty. With the table initialized 0 eight-
bit cliaractérs, the first:256 codes need only nine bits, the
next 512 dodes need: 18 hm&, anﬁmnn Fnrnxampie aten-
thousand character Mmessage at: fwo-ts-oné compression
would see a seven-percent improvement in cnmpressmn
ratio wsing increasing length codes. However, this ap-
proach significantly increases logic comiplexity in both the
compressor and decompressor. '

s s o b e pr i e e BT Lt e

o~

-""'1‘:_'.\.‘-' e —

mn1%;@;;:54“#_5_:___3__.- - -
. GOUNTER

RAM ADDRESS -

HASH
- FURCTION

sl p e p oo il A T SR R R R T
I R R B A L L P ATt P P LI R
LI e DA . feev . PR R R et

The compression string table could beinitialized (o have

The length of codes used in compressed daia can be -
varied 1o Emprove ¢ompression early in the message. The

The code assignment methoed could vary from the se-
" quential assignment used in the preceding examples. One
mﬁ:m&tmg alternafive is to use the (hash) address of the
string location in the compressor’s RAM. This saves com-
pressor memory width but requires the decompressor to
use the same hashing function to generate code valucs,
Decompression then becomes sensitive 10 COmMpression im-
plementation techniques, which is a serious disadvantage.
This. problem is especially hard for software decompres-
sion because it is usually difficult (o dupﬁcam a pood hard-
ware hash function in software.
On the wholg, the LZW algorithm as initially dgm;nbﬁd
with 12-bit codes, appedrs to be 2 widely suitable sysiem;
-other variations would appear only in special applications,

4

The LZW algorithm described here solves several prov- i

lems that hinder the use of compression in commercial

B e T e .-\._-._ﬂ\.-.--lu-.--\.- LRI 1-_':'.'\.'::"1.:.::1-

"smmﬁ T

‘RAM
W

- s

PRIGR CODE

Airirie

2 N\

COMPARE

— NEW CODE

7

CODE
COUNTER

e AR T

CINPUT

OUTPUY
_CODE

EﬂDE NUMBER

3

ﬂnnnﬁnTEns |

CHARACTER %

P e TR TR LT e,
e R R i T A ok Y . P N
R LA T e il
o - ,
- - " e
. ittt .

" GORE
COUNTER

HEEESTEH —

:
BRIy e R R B IR T R R R

[L O '\. .I':':'\E

) I e

 STRING TABLE.
AN

+

] l

PRIOR COBE

e

CHARACTER

RAM ADDRESS

OUTPYY i
CHARACTERS >

S rr—

STACK

FINAL
CHARAGTER

Figure 8. A decompressor implemefﬁtla]t_iqi}_,‘ . |

COMPUTER

eh _put&'::ﬁiiﬁtems kit adapts to the type of data being pro-
passed, s61t needs no programmer guidance or preanalysis
of datai 1!5 srmpimuy permits very high speed execution, as
apprﬂprmﬂ to current disk and tape transfer rates. The

......

:raaﬁﬂm ﬁata density tn commercial compuler systems—is
gnﬁ::i €notigh to be cumpcmwe with other methods and, in
“faet, compares very well in general because it exploits
several types of redundanmes Unfortunately, other
system-level problems inherent to the use of adaptive com-
pression may prevent its widespread use. These include the
unpredictability of Cotnpressed image size, the need for

i character stream buffering, and inm='~-mnstrmnts on

minimum message length, ¥k
Acknowledgments

Severai members of the Sperry Research Center have
contributed to this data compression effort, Stanley Teeter
programmed several versions of the LZW algorithm and
collected the data reported in this articie. Willard Eastman

apd-Martin Cohn worked on predecessor Lempei-Ziv im-
?"_:,l_ﬁmﬁntatmns lhat iiiusuateﬁ th: value uf this appmach

| ”lhlﬂ wnrk are paruculariy appreciated

Referances

t. H. K. Reghbati, “An Overview of Darz Compression
o ;fﬂc?hmques,“ Eﬂmputen Vol. 14, No. 4, Apr. 1981, pp.
S &

2. F. Rubin, “Experiments in Text File Compression,"
Comm. ACM, Vol 19, No. 1, Nov. 1976, pp. 617-623.

3. M. Pechurﬁ. “File Archivat Techniques Using Data Com-
pression,”” Comm. ACM, Vol. 25, No. 9, Sept.. 1982, pp.
605-508.

4. 1. A, Storer and T. G, szymanki, “'Data Compression via
cTextual Substitution,” J. ACM, Yol. 29, No. 4, Oct. 1982,
. 928-951.

5. J. Zivand A. Lempel, ' A Universal Algorithm for Sequen-
tial Data Compression,”” JEEE Trans, Information Theory,
Vol. IT-23, No. 3, May 1977, pp. 337-343,

6. J. Ziv and: A. Lempel, “Compression of individuai Se-
quences via Variable-Rate Coding,”” JEEE Trans. Informa-
‘tion Theory, Vol. 1T-24, No. §, Sept. 1978, pp. £306.

7. M. Rodeh, V. R. Pratt, and 3, Even, *‘Linear Mgcsri!hni for
Data Compression viz String Matching, ' J. ACM Vol. 28,
Mo. 1, Jan. 198%, pp. 16-24,

wi: ¢ Terry A. Welch is a senior manager for
: Digitai Equipment Corporation, now on
assignment in Austin, Texas, as DEC
flaison to MCC’s advanced compuler ar-
chitectire program. Prior to joining DEC
in 1983, he was manager of computer ar-
chitecture research al the Sperry Research
g e Center, Sudbury, Massachusetts, for seven
s } years, Previously he tanght at the Universi-
sbildiey %. 4+ ty of Texas at Austin and worked in com-
puter design at Honeywell in Waltham, Massachusetts. -
His BS, MS, and PhD'degrees were received from MiT in elec-
tnical engmeenng Weich s a senior member of lEEE and is acxm'e
in various IEEE-CS activities.

If\.li.‘:l . l.| -
[%
. -

Questions about this article can be directed to the author at
MCC, 943G Research Blvd,, Austin, TX 78759.

SOFTWARE ENGINEERS

oy MEDONNELL DOUGLAS o
R EReey ASTRONAUTICS COMPANY rap-ra:aenta
.+ the highestiradition of success in real-time

would be heipful,

cperating systems is required. Familiarity
with Ada software design methedoliogies

i hisgile programs: For softwarg Enginae
_this means exceptional responsibilities i’
1 providing the Free World with the vitat

< advantage of sliperitr apability. These -

... thestate-ot-therart is the starting pOIN...
"-'r_"-.'fmc:haﬂanga o

. OPERATIONAL FLIGHT SGF'EWAHE.
Projects focus oh embedded missile and
satellité applicétions. A minkmum ot 5
yaars of experigiics with real-time coniro)

ésvstems is required;.

SOFTWARE. Responsibilities. volve
' parf-::-rmancﬂ anaiysiy Enc ruquimment:
-atit verification requirements: At TEES’!‘E

T dateines systems development arid tactical

i cateer areds refiectanenvironiment where

sﬂapmwmmnmnmmi .

- years of experience with gdisplaysand .. ;. -

MCDOMNELL DOUGLAS

M Eqv..mi Cpmartunlty Employer
448, Citizarsiop Requin

IR RO A T O

A BS in electrical engineering or compeiter
science ks NOCessary in either ares,

These positions are accompaniad by
axcellent salgrigs and banefits and the
sparking iifestyie of St. Louis, & tity of
metropalitan excitement, community spirit

~ang affordable pleasures. if you are
seeking the company with an unmatched
capaﬂﬁty lor acceletating your career,
forward your resume and a statement an
your professional objectives tor

MCDONNELL DOUGLAS CORPORATION

Attertion: [Hrector of Electronics
Post Dffice Box 516

Deparitment 62-8Y-53

8t Louis, Missour 53166

.

