Travaux Dirigés N° 4

Transformée de Laplace

Exercice 01:

Calculer les transformées de Laplace des fonctions usuelles suivantes à l'aide de la définition (penser à utiliser les formules d'Euler si besoin).

$$u(t)$$
, $tu(t)$, $e^{-at}u(t)$, $\cos(\omega t)u(t)$, $\sin(\omega t)u(t)$.

Exercice 02:

En utilisant les théorèmes des valeurs initiale et finale, calculez $s(t\rightarrow 0+)$ et $s(t\rightarrow \infty)$ pour les fonctions suivantes :

1.
$$S(p) = \frac{p^2 + 2p + 4}{p^3 + 3p^2 + 2p}$$

2.
$$S(p) = \frac{p^3 + 2p^2 + 6p + 8}{p^3 + 4p}$$

Exercice 03:

Calculer les transformées de Laplace inverse des fonctions suivantes.

1.
$$F(p) = \frac{p-8}{(p-8)^2 + 25}$$

2.
$$H(p) = \frac{p+1}{p^2+4}$$

3.
$$M(p) = \frac{p-2}{(p-2)^2+4}$$

4.
$$G(p) = \frac{1}{(p+1)^2} + \frac{1}{p^2 + 1}$$

Exercice 04:

Calculer les transformées de Laplace associées aux équations différentielles suivantes, puis déterminer leur solution générale en appliquant la transformée de Laplace inverse.

1.
$$y'' + 4y' + 3y = 6$$
 $y(0) = y'(0) = 0$

2.
$$y'' + 3y' + 2y = 1$$
 $y(0) = -1$ et $y'(0) = 2$

Exercice 05:

On suppose une fonction causale $\mathbf{f}(\mathbf{t})$ qui est périodique de période \mathbf{T} pour $t \ge 0$. Plus précisément, la période de $\mathbf{f}(\mathbf{t})$ est une fonction $\mathbf{f}_0(\mathbf{t})$, ce qui permet d'écrire :

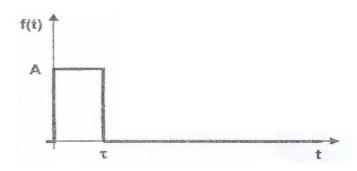
$$f(t) = f_0(t) + f_0(t-T) + f_0(t-2T) + \dots + f_0(t-nT)$$



Montrer que : $L[f(t)] = L[f_0(t)] \frac{1}{1 - e^{-T_p}}$.

Exercice 06:

1. Calculer la transformée de Laplace de la fonction $\mathbf{f}(\mathbf{t})$.



2. Déduire la transformée de Laplace de g(t).

