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• Later in the course we shall review various
methods of designing frequency-selective
filters satisfying prescribed specifications

• We now describe several low-order FIR and
IIR digital filters with reasonable selective
frequency responses that often are
satisfactory in a number of applications
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• FIR digital filters considered here have
integer-valued impulse response coefficients

• These filters are employed in a number of
practical applications, primarily because of
their simplicity, which makes them amenable
to inexpensive hardware implementations
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Lowpass FIR Digital Filters
• The simplest lowpass FIR digital filter is the

2-point moving-average filter given by

• The above transfer function has a zero at
      and a pole at z = 0

• Note that here the pole vector has a unity
magnitude for all values of ω
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• On the other hand, as ω increases from 0 to
π, the magnitude of the zero vector
decreases from a value of 2, the diameter of
the unit circle, to 0

• Hence, the magnitude response                  is
a monotonically decreasing function of ω
from ω = 0 to ω = π
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• The maximum value of the magnitude
function is 1 at ω = 0, and the minimum
value is 0 at ω = π, i.e.,

• The frequency response of the above filter
is given by
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• The magnitude response
can be seen to be a monotonically
decreasing function of ω

)2/cos(|)(| 0 ω=ωjeH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ω/π

M
ag

ni
tu

de

First-order FIR lowpass filter



7
Copyright © 2001, S. K. Mitra

Simple FIR Digital FiltersSimple FIR Digital Filters
• The frequency             at which

is of practical interest since here the gain
in dB is given by

since the dc gain
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• Thus, the gain G(ω) at             is
approximately 3 dB less than the gain at ω
= 0

• As a result,       is called the 3-dB cutoff
frequency

• To determine the value of       we set

which yields
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• The 3-dB cutoff frequency       can be
considered as the passband edge frequency

• As a result, for the filter            the passband
width is approximately π/2

• The stopband is from π/2 to π
• Note:            has a zero at             or ω = π,

which is in the stopband of the filter
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• A cascade of the simple FIR filter

results in an improved lowpass frequency
response as illustrated below for a cascade
of 3 sections
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• The 3-dB cutoff frequency of a cascade of
M sections is given by

• For M = 3, the above yields
• Thus, the cascade of first-order sections

yields a sharper magnitude response but at
the expense of a decrease in the width of the
passband
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• A better approximation to the ideal lowpass

filter is given by a higher-order moving-
average filter

• Signals with rapid fluctuations in sample
values are generally associated with high-
frequency components

• These high-frequency components are
essentially removed by an moving-average
filter resulting in a smoother output
waveform
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Highpass FIR Digital Filters
• The simplest highpass FIR filter is obtained

from the simplest lowpass FIR filter by
replacing z with

• This results in
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• Corresponding frequency response is given

by

whose magnitude response is plotted below
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• The monotonically increasing behavior of
the magnitude function can again be
demonstrated by examining the pole-zero
pattern of the transfer function

• The highpass transfer function            has a
zero at z = 1 or ω = 0 which is in the
stopband of the filter
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• Improved highpass magnitude response can
again be obtained by cascading several
sections of the first-order highpass filter

• Alternately, a higher-order highpass filter of
the form

is obtained by replacing z with        in the
transfer function of a moving average filter
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• An application of the FIR highpass filters is
in moving-target-indicator (MTI) radars

• In these radars, interfering signals, called
clutters, are generated from fixed objects in
the path of the radar beam

• The clutter, generated mainly from ground
echoes and weather returns, has frequency
components near zero frequency (dc)
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• The clutter can be removed by filtering the
radar return signal through a two-pulse
canceler, which is the first-order FIR
highpass filter

• For a more effective removal it may be
necessary to use a three-pulse canceler
obtained by cascading two two-pulse
cancelers
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Lowpass IIR Digital Filters
• A first-order causal lowpass IIR digital

filter has a transfer function given by

where |α| < 1 for stability
• The above transfer function has a zero at

i.e., at ω = π  which is in the stopband
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•               has a real pole at z = α
• As ω increases from 0 to π, the magnitude

of the zero vector decreases from a value of
2 to 0, whereas, for a positive value of α,
the magnitude of the pole vector increases
from a value of          to

• The maximum value of the magnitude
function is 1 at ω = 0, and the minimum
value is 0 at ω = π
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• i.e.,
• Therefore,                    is a monotonically

decreasing function of ω from ω = 0 to ω = π
as indicated below
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• The squared magnitude function is given by

• The derivative of                      with respect
to ω is given by
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                                     in the range
verifying again the monotonically decreasing
behavior of the magnitude function

• To determine the 3-dB cutoff frequency
we set

in the expression for the square magnitude
function resulting in
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or

which when solved yields

• The above quadratic equation can be solved
for α yielding two solutions
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• The solution resulting in a stable transfer

function              is given by

• It follows from

that              is a BR function for |α| < 1
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Highpass IIR Digital Filters
• A first-order causal highpass IIR digital filter

has a transfer function given by

where |α| < 1 for stability
• The above transfer function has a zero at z = 1

i.e., at ω = 0  which is in the stopband
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• Its 3-dB cutoff frequency       is given by

which is the same as that of
• Magnitude and gain responses of

are shown below
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•                is a BR function for |α| < 1
• Example - Design a first-order highpass

digital filter with a 3-dB cutoff frequency of
0.8π

• Now,                                                   and

• Therefore

)(zHHP

587785.0)8.0sin()sin( =π=ωc
80902.0)8.0cos( −=π

5095245.0cos/)sin1( −=ωω−=α cc



29
Copyright © 2001, S. K. Mitra

Simple IIR Digital FiltersSimple IIR Digital Filters

• Therefore,












+
−= −

−

1

1

509524501
12452380

z
z

.
.












−
−+= −

−

1

1

1
1

2
1

z
zzHHP

α
α

)(



30
Copyright © 2001, S. K. Mitra

Simple IIR Digital FiltersSimple IIR Digital Filters
Bandpass IIR Digital Filters
• A 2nd-order bandpass digital transfer

function is given by

• Its squared magnitude function is
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•                      goes to zero at ω = 0 and ω = π
• It assumes a maximum value of 1 at             ,

called the center frequency of the bandpass
filter, where

• The frequencies       and       where         
becomes 1/2 are called the 3-dB cutoff
frequencies
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• The difference between the two cutoff
frequencies, assuming                  is called
the 3-dB bandwidth and is given by

• The transfer function              is a BR
function if |α| < 1 and |β| < 1
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• Plots of                     are shown below|)(| ωj
BP eH
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• Example - Design a 2nd order bandpass

digital filter with center frequency at 0.4π
and a 3-dB bandwidth of 0.1π

• Here
and

• The solution of the above equation yields:
α = 1.376382 and α = 0.72654253
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• The corresponding transfer functions are

and

• The poles of              are at z = 0.3671712
        and have a magnitude > 1
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• Thus, the poles of              are outside the
unit circle making the transfer function
unstable

• On the other hand, the poles of               are
at z =                                          and have a
magnitude of 0.8523746

• Hence               is BIBO stable
• Later we outline a simpler stability test
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• Figures below show the plots of the
magnitude function and the group delay of
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Bandstop IIR Digital Filters
• A 2nd-order bandstop digital filter has a

transfer function given by

• The transfer function              is a BR
function if |α| < 1 and |β| < 1
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• Its magnitude response is plotted below
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• Here, the magnitude function takes the
maximum value of 1 at ω = 0 and ω = π

• It goes to 0 at            , where      , called the
notch frequency, is given by

• The digital transfer function              is more
commonly called a notch filter
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• The frequencies       and       where         
becomes 1/2 are called the 3-dB cutoff
frequencies

• The difference between the two cutoff
frequencies, assuming                  is called
the 3-dB notch bandwidth and is given by
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Higher-Order IIR Digital Filters
• By cascading the simple digital filters

discussed so far, we can implement digital
filters with sharper magnitude responses

• Consider a cascade of K first-order lowpass
sections characterized by the transfer
function
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• The overall structure has a transfer function
given by

• The corresponding squared-magnitude
function is given by
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• To determine the relation between its 3-dB

cutoff frequency       and the parameter α,
we set

which when solved for α, yields for a stable
      :
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where

• It should be noted that the expression for α
given earlier reduces to

for K = 1
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• Example - Design a lowpass filter with a 3-
dB cutoff frequency at                  using a
single first-order section and a cascade of 4
first-order sections, and compare their gain
responses

•  For the single first-order lowpass filter we
have
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• For the cascade of 4 first-order sections, we
substitute K = 4 and get

• Next we compute
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• The gain responses of the two filters are

shown below
• As can be seen, cascading has resulted in a

sharper roll-off in the gain response
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