Linear-Phase FIR Transfer
Functions
e |tisnearly Impossibleto design alinear-
nhase | IR transfer function

 |tisaways possibleto design an FIR
transfer function with an exact linear-phase
response

e Consider acausal FIR transfer function H(2)
of length N+1, i.e., of order N:

H(2) =Y Jhin]z™"
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Linear-Phase FIR Transfer

Functions

e The above transfer function has alinear
phase, If Its impulse response h[n] is ether
symmetric, I.e,,

h[n]=n[N-n], 0<n<N
or iIsantisymmetric, I.e.,
h[n]=-N[N-n], 0<n<N
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Linear-Phase FIR Transfer
Functions

e Since the length of the impulse response can
be either even or odd, we can define four
types of linear-phase FIR transfer functions

* For an antisymmetric FIR filter of odd
length, i.e., N even

N[N/2] =0
e \We examine next the each of the 4 cases
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Linear-Phase FIR Transfer
Functions
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Linear-Phase FIR Transfer

Functions
ype 1: Symmetric |mpulse Response with
Odd Length
* Inthiscase, the degree N is even
o Assume N = 8 for smplicity
e Thetransfer function H(z) isgiven by
H(2) = h[0] + N[z} + h[2]z % + h[3] 2>
+h[4]z*+h[5]z >+ 6]z ° + 7]z "+ h[8]z°
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Linear-Phase FIR Transfer

Functions

e Because of symmetry, we have h[0] = h[§],
h[1] = h[7], h[2] = h[6], and h[3] = h[5]
e Thus, we can write
H(2) = h[0](1+ 2 %)+ h[1(z 1+ 27"
+h[2(z7% + %) + h[3(z 3 + 27°) + h[4]z™*
= 77 HNO|(Z* + M + h[1(Z2 + Z27°)
+h[2](Z% + 272) + h[3](z+ Z 1) + h[ 4]}
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Linear-Phase FIR Transfer

Functions
e The corresponding freguency response s
then given by
H (e!®) = & 14°{ 21 0] cos(4w) + 2h[1] cos(3m)
+ 2h[ 2] cos(2m) + 2N 3] cos(w) + N[4]}
e The quantity inside the bracesisareal

function of w, and can assume positive or
negative valuesin therange O<|w/ <=
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Linear-Phase FIR Transfer
Functions

* The phase function hereis given by

O(w)=—40+f3
where 3 Iseaither O or &, and hence, itisa
linear function of m In the generalized sense

* The group delay i1s given by
t(@)=-""" =4
Indicating a constant group delay of 4 samples
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Linear-Phase FIR Transfer
Functions
e Inthe general casefor Type 1 FIR filters,
the frequency response is of the form
H (e!®) = e N2 (@)
where the amplitude response H (), also

called the zer o-phase response, is of the
form

H (o) = h[NT+ 2Nz/2h['; — n]cos(®n)
n=1
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Linear-Phase FIR Transfer
Functions

 Example - Consider
Ho(2) =[5+ 772473+ 7% 4270+ > 7]
which Is seen to be a dlightly modified

version of alength-7 moving-average FIR
filter

e The above transfer function has a

symmetric impulse response and therefore a
linear phase response

10 _ _
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Linear-Phase FIR Transfer
Functions

A plot of the magnitude response of Hy(2)
along with that of the 7-point moving-
average filter is shown below

1
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Linear-Phase FIR Transfer

Functions

* Note the Improved magnitude response
obtained by ssmply changing the first and the
last Impulse response coefficients of a
moving-average (MA) filter

e |t can be shown that we an express

Ho(2) = S(L+ z_l)-é(1+ 7l 7%173+ 7%+ 2
which Is seen to be a cascade of a 2-point MA
filter with a 6-point MA filter

 Thus,Hp(z) hasadoublezeroatz=-1, I.e,
(o =)

-5

12 _ _
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Linear-Phase FIR Transfer

Functions

ype 2: Symmetric |mpulse Response with

Even Length
* Inthiscase, the degree N is odd
o Assume N =7 for smplicity
* Thetransfer function is of the form

H(2) =h[0

+h[4

13

+ 1zt +h[2]27% + h[3]z3
z 4+ 5]z +h6]z°+h7]Z’
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Linear-Phase FIR Transfer
Functions

e Making use of the symmetry of the impulse
response coefficients, the transfer function

can be written as

H(2)=h[0](1+Z ")+ h1(z 1+ %)
+h[21(z7% +2°)+h[3|(z >+ 2%

= 712001272 + 7712y 4 iy (222 + 2752
+h[21(2Y % + 27¥'%) + (2% + 7Y %)
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Linear-Phase FIR Transfer

Functions

e The corresponding freguency response s
givenby
H (e®) = e 1 7*"%{ 2h[0] cos( ) + 2h[1] cos(52)
+ 2h[ 2] cos(%) + 2h[3] cos(%)}
o Asbefore, the quantity inside the bracesis a

real function of ®, and can assume positive
or negative valuesin therange 0<|o <

15 _ _
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Linear-Phase FIR Transfer
Functions

* Here the phase function is given by
O(w) = oo+[3
where again B Is elther Oorm

o Asaresult, the phaseisalso alinear
function of o In the generalized sense

* The corresponding group delay iIs
T(®) = Z

s Indicating agroup delay of ; samples
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Linear-Phase FIR Transfer

Functions

e The expression for the frequency response
In the general case for Type 2 FIR filtersis
of the form

H (ej(D) — e—jN(D/ZI_T(m)
where the amplitude response is given by

(N+1)/2
Hw) =2 ¥ h[ "t —n] cos(w(n- 7))
n=1

17 _ _
Copyright © 2001, S. K. Mitra



Linear-Phase FIR Transfer

Functions

ype 3. Antiymmetric | mpulse Response
with Odd Length

* Inthiscase, the degree N Is even
e Assume N = 8 for smplicity
* Applying the symmetry condition we get
H(z) =z 4h0)(z* - z %)+ hj1] (2 - )
+h2](z% - 2 %)+ h[3](z— Z 1)}

18
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Linear-Phase FIR Transfer

Functions
e The corresponding freguency response s
given by
H (e)®) = e 14~ 1™ 2f 21 0] sin(4w) + 2h[1] sin(3o)
+ 2N 2]sin(2w) + 2h[3]sin(w)}
|t also exhibits a generalized phase response
given by

6(0) =—4w+7+f

where 3 iseither Oor &

19 _ _
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Linear-Phase FIR Transfer

Functions
 Thegroup delay hereis
() =4
Indicating a constant group delay of 4 samples

e |Inthe general case
H (ej(D) e jN(D/ZH ((D)

where the amplitude response is of the form

N/2
H) =2Y h['\I —n]sin(mn)

n=1
20 _ _
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Linear-Phase FIR Transfer

Functions

ype 4. Antiymmetric | mpulse Response
with Even Length

* Inthiscase, the degree N is even

e Assume N =7 for ssimplicity

* Applying the symmetry condition we get
H(Z) = 2‘7/2{h[0](z7/2 B 2—7/2) N h[1](25/2 B 2—5/2)
+h[2] (23/2 B 2—3/2) +h[3 (21/2 B 2‘1/2)}

21 _ _
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Linear-Phase FIR Transfer

Functions

e The corresponding freguency response s
given by
H(el®) =e 172 1M 4 2n[0]sin(7e) + 2h[1] sin(32)
+2h[2] s n(3§)) + 2h[3]sin(%)}
|t again exhibits a generalized phase
response given by
O(0)=—So+Z+p

where 3 iseither Oor &

22 _ _
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Linear-Phase FIR Transfer

Functions
* The group delay Is constant and is given by

(o) =4
 Inthe genera case we have
H(e') = je!™"?H (o)
where now the amplitude response is of the
form

(N+1)/2
H() =2 Y hN-n]sin(e(n-1))

n=1

23 _ _
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Linear-Phase FIR Transfer
Functions

General Form of Freguency Response

 In each of the four types of linear-phase FIR
filters, the frequency response is of the form

H (e)®) = ™ 1N/ 2P ()
e The amplitude response H (®) for each of
the four types of linear-phase FIR filters can

become negative over certain frequency

ranges, typically in the stopband

24 _ _
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Linear-Phase FIR Transfer

Functions

e The magnitude and phase responses of the
linear-phase FIR are given by

H(e")|= H ()
~Noy B for H(w)>0

—NZ(”+[3—7I, for H(w) <0

O(w) =+

 Thegroup delay in each caseis

_ N
25 T((D) 2
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Linear-Phase FIR Transfer

Functions

* Note that, even though the group delay iIs
constant, since in general |H (e'®)| isnot a
constant, the output waveform isnot a
replica of the input waveform

 An FIR filter with afreguency response that
ISarea function of w Is often called a zer o-
phase filter

« Such afilter must have a noncausal impulse
response
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Zero Locations of Linear-
Phase FIR Transfer Functions

e Congider first an FIR filter with a symmetric
Impulse response: h[n] = h[N —n]
o |tstransfer function can be written as

N N
H(z2)= Y hnlz"= YhN-n]z"
n=0 n=0
e By making achange of variablem= N —n,
we can write

N N N
ShIN-njz"= Shimz MM =z S hm]z™
m=0

27 n=0 m=0
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Zero Locations of Linear-
Phase FIR Transfer Functions

e But, N
SO ohmz" =H(Z )

 Hencefor an FIR filter with a symmetric
Impulse response of length N+1 we have

H(z)=z "H(z ™
A real-coefficient polynomial H(2)
satisfying the above condition iscalled a

mirror-image polynomial (MIP)
28
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Zero Locations of Linear-

Phase FIR Transfer Functions

* Now consider first an FIR filter with an
antisymmetric impul se response:

h[n] =—h[N —n]
e |ts transfer function can be written as

H(2) = Zh[n]z_”:—Zh[N njz "
. Bymaklngachangeofvarlablem N-n,
Weget

—zh[N n]z—“z—zh[m]z N+m — 7Nz
29 n=0 m=0
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Zero Locations of Linear-
Phase FIR Transfer Functions

e Hence, the transfer function H(z) of an FIR
filter with an antisymmetric impulse
response satisfies the condition

H(z)=—z “H(z})
A real-coefficient polynomial H(2)
satisfying the above condition is called a
antimirror-image polynomial (AlP)

30
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Zero Locations of Linear-
Phase FIR Transfer Functions
e |t followsfrom the relation H(z):iz‘NH(z‘l)
that if z=£, isazeroof H(2), soisz=1/&,

e Moreover, for an FIR filter with areal

Impul se response, the zeros of H(z) occur In
complex conjugate pairs

* Hence, azero at z=¢£,is associated with a
zeroat z=¢&;
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Zero Locations of Linear-
Phase FIR Transfer Functions

e Thus, acomplex zero that is not on the unit
circle is associated with a set of 4 zeros given

by

z=re*l?, z=1e"?

e A zero ontheunit circle appear asapair
_otid
Z2=¢€

as Itsreciprocal is aso its complex conjugate

32 _ _
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Zero Locations of Linear-
Phase FIR Transfer Functions

e Sinceazeroat z=+1isitsown reciprocal,
It can appear only singly
 Now aType 2 FIR filter satisfies
H(2)=z “H(z?}
with degree N odd
e HenceH (-1 =(-) "N H(-1) =—H(-1)
Implying H(-1) =0, I.e.,, H(z2) must have a

Zzeroatz=-1
33
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Zero Locations of Linear-

Phase FIR Transfer Functions

e Likewise, aType3or 4 FIR filter satisfies
H(z)=—z “H(z™)
e Thus HQ) =-@) NH@) =-H(Q)
Implying that H(z) must haveazeroatz=1
e Onthe other hand, only the Type 3 FIR

filter Isrestricted to haveazeroat z=-1
since here the degree N is even and hence,

H-)=—(-) NH(=) =-H (-

34
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Zero Locations of Linear-

Phase FIR Transfer Functions
o Typical zero locations shown below

jlmz

JanY

Typel

o !

jlmz

Rez

35

jlmz

/‘ u: )
L} T nﬂ
mit ci

Copyright © 2001, S. K. Mitra

Type?2



36

Zero Locations of Linear-

Phase FIR Transfer Functions
e Summarizing
(1) Type 1 FIR filter: Either an even number
ornozerosatz=1and z=-1

(2) Type 2 FIR filter: Either an even number
or no zeros at z= 1, and an odd number of
zevosat z=-1

(3) Type 3 FIR filter: An odd number of
zerosatz=1land z=-1
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Zero Locations of Linear-
Phase FIR Transfer Functions

(4) Type 4 FIR filter: An odd number of
zeros at z= 1, and ether an even number or
no zerosat z=-1

* The presence of zerosat z==1|eadsto the
following limitations on the use of these
linear-phase transfer functions for designing
frequency-selective filters

37 _ _
Copyright © 2001, S. K. Mitra



Zero Locations of Linear-
Phase FIR Transfer Functions

A Type 2 FIR filter cannot be used to

design a highpass filter since it dways has a
zero z=-1

A Type 3 FIR filter has zeros at bothz=1
and z = -1, and hence cannot be used to
design either alowpass or a highpass or a
bandstop filter

38 _ _
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Zero Locations of Linear-
Phase FIR Transfer Functions

A Type4 FIR filter is not appropriate to
design alowpass filter due to the presence
ofazeroatz=1

* Type 1 FIR filter has no such restrictions

and can be used to design almost any type
of filter

39 _ _
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Bounded Real Transfer
Functions

e A causal stable real-coefficient transfer

function H(2) I1s defined as abounded real
(BR) transfer function if

H(e!®)|<1 for all values of

e Let x[n] and y[n] denote, respectively, the
Input and output of adigital filter
characterized by a BR transfer function H(2)
with X (e!®) and Y (e!®) denoting their
DTFTs

40 _ _
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Bounded Real Transfer
Functions
e Then thecondition|H(ej‘”)|£1impliesthat

vy’ <|x (el®)

 Integrating the above from —r to x, and
applying Parseval’ s relation we get

Sy < Y Xn]?

N=—00 N=—00

41
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Bounded Real Transfer
Functions

o Thus, for all finite-energy inputs, the output
energy Islessthan or equal to the input
energy Implying that adigital filter
characterized by a BR transfer function can
be viewed as apassive structure

e If [H(e'®)|=1, then the output energy is
equal to the input energy, and such adigital
filter Istherefore alossless system

42 _ _
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Bounded Real Transfer
Functions

» A causal stable real-coefficient transfer
function H(2) with |H (e’®)|=1 isthus
called alossless bounded real (L BR)
transfer function

 The BR and LBR transfer functions are the
keysto the realization of digital filters with
low coefficient sensitivity
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