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AnalogAnalog Lowpass Lowpass Filter Filter
SpecificationsSpecifications

• Typical magnitude response                of an
analog lowpass filter may be given as
indicated below
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AnalogAnalog Lowpass Lowpass Filter Filter
SpecificationsSpecifications

• In the passband, defined by                   , we
require

i.e.,                approximates unity within an
error of

)( ΩjHa
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• In the stopband, defined by                   , we
require

i.e.,               approximates zero within an
error of

pδ±
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AnalogAnalog Lowpass Lowpass Filter Filter
SpecificationsSpecifications

•         -   passband edge frequency
•         -  stopband edge frequency
•         -  peak ripple value in the passband
•         -  peak ripple value in the stopband
• Peak passband ripple
     dB
• Minimum stopband attenuation
                        dB
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AnalogAnalog Lowpass Lowpass Filter Filter
SpecificationsSpecifications

• Magnitude specifications may alternately be
given in a normalized form as indicated
below
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AnalogAnalog Lowpass Lowpass Filter Filter
SpecificationsSpecifications

• Here, the maximum value of the magnitude
in the passband assumed to be unity

•                   - Maximum passband deviation,
given by the minimum value of the
magnitude in the passband

•      - Maximum stopband magnitude
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A
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AnalogAnalog Lowpass Lowpass Filter Design Filter Design
• Two additional parameters are defined -

(1) Transition ratio

For a lowpass filter

(2) Discrimination parameter
Usually
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ButterworthButterworth Approximation Approximation

• The magnitude-square response of an N-th
order analog lowpass Butterworth filter
is given by

• First             derivatives of                   at
are equal to zero

• The Butterworth lowpass filter thus is said
to have a maximally-flat magnitude at
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ButterworthButterworth Approximation Approximation

• Gain in dB is

• As                 and
                                                                    dB
       is called the 3-dB cutoff frequency

2
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ButterworthButterworth Approximation Approximation

• Typical magnitude responses with 1=Ωc
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ButterworthButterworth Approximation Approximation

• Two parameters completely characterizing a
Butterworth lowpass filter are       and  N

• These are determined from the specified
bandedges        and      , and minimum
passband magnitude                , and
maximum stopband ripple

cΩ

pΩ sΩ
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ButterworthButterworth Approximation Approximation
•       and  N  are thus determined from

• Solving the above we get
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ButterworthButterworth Approximation Approximation
• Since order N must be an integer, value

obtained is rounded up to the next highest
integer

• This value of N is used next to determine
by satisfying either the stopband edge or the
passband edge specification exactly

• If the stopband edge specification is
satisfied, then the passband edge
specification is exceeded providing a safety
margin

cΩ
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ButterworthButterworth Approximation Approximation
• Transfer function of an analog Butterworth

lowpass filter is given by

where

• Denominator              is known as the
Butterworth polynomial of order N
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ButterworthButterworth Approximation Approximation
• Example - Determine the lowest order of a

Butterworth lowpass filter with a 1-dB cutoff
frequency at 1 kHz and a minimum attenuation of 40
dB at 5 kHz

• Now

which yields
and

which yields
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ButterworthButterworth Approximation Approximation
• Therefore

and

• Hence

• We choose N = 4
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ChebyshevChebyshev Approximation Approximation
• The magnitude-square response of an N-th

order analog lowpass Type 1 Chebyshev filter
is given by

where              is the Chebyshev polynomial
of order N:
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ChebyshevChebyshev Approximation Approximation

• Typical magnitude response plots of the
analog lowpass Type 1 Chebyshev filter are
shown below
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ChebyshevChebyshev Approximation Approximation
• If at              the magnitude is equal to 1/A,

then

• Solving the above we get

• Order N is chosen as the nearest integer
greater than or equal to the above value
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ChebyshevChebyshev Approximation Approximation
• The magnitude-square response of an N-th

order analog lowpass Type 2 Chebyshev
(also called inverse Chebyshev) filter is
given by

where              is the Chebyshev polynomial
of order N
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ChebyshevChebyshev Approximation Approximation
• Typical magnitude response plots of the

analog lowpass Type 2 Chebyshev filter are
shown below
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ChebyshevChebyshev Approximation Approximation
• The order N of the Type 2 Chebyshev filter

is determined from given     ,       , and  A
using

• Example - Determine the lowest order of a
Chebyshev lowpass filter with a 1-dB cutoff
frequency at 1 kHz and a minimum attenuation of
40 dB at 5 kHz -
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Elliptic ApproximationElliptic Approximation
• The square-magnitude response of an

elliptic lowpass filter is given by

where             is a rational function of order
N satisfying                                  , with the
roots of its numerator lying in the interval
                 and the roots of its denominator
lying in the interval
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Elliptic ApproximationElliptic Approximation
• For given      ,      ,    ,  and A, the filter order

can be estimated using

where
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Elliptic ApproximationElliptic Approximation
• Example - Determine the lowest order of a elliptic

lowpass filter with a 1-dB cutoff frequency at 1
kHz and a minimum attenuation of 40 dB at 5 kHz
Note: k = 0.2 and

• Substituting these values we get

• and hence N = 2.23308
• Choose N = 3

5134.196/1 1 =k

,979796.0'=k ,00255135.00 =ρ
0025513525.0=ρ
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Elliptic ApproximationElliptic Approximation

• Typical magnitude response plots with
are shown below
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Analog Analog Lowpass Lowpass Filter DesignFilter Design
• Example - Design an elliptic lowpass filter

of lowest order with a 1-dB cutoff
frequency at 1 kHz and a minimum
attenuation of 40 dB at 5 kHz

• Code fragments used
[N, Wn] = ellipord(Wp, Ws, Rp, Rs, ‘s’);
[b, a] = ellip(N, Rp, Rs, Wn, ‘s’);
with     Wp = 2*pi*1000;

                 Ws = 2*pi*5000;
                 Rp = 1;
                 Rs = 40;
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AnalogAnalog Lowpass Lowpass Filter Design Filter Design

• Gain plot
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Design of Analog Design of Analog HighpassHighpass,,
BandpassBandpass and and Bandstop Bandstop Filters Filters

• Steps involved in the design process:
Step 1 - Develop of specifications of a
prototype analog lowpass filter
from specifications of desired analog filter

      using a frequency transformation
Step 2 -  Design the prototype analog
lowpass filter
Step 3 - Determine the transfer function
of desired analog filter by applying the
inverse frequency transformation to
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Design of AnalogDesign of Analog Highpass Highpass,,
BandpassBandpass and and Bandstop Bandstop Filters Filters
• Let s denote the Laplace transform variable

of prototype analog lowpass filter     
and     denote the Laplace transform
variable of desired analog filter

• The mapping from s-domain to    -domain is
given by the invertible transformation

• Then

ŝ

ŝ
)ˆ(sHD

)ˆ()()ˆ( sFsLPD sHsH ==
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AnalogAnalog Highpass Highpass Filter Design Filter Design
• Spectral Transformation:

where        is the passband edge frequency of
and     is the passband edge

frequency of
• On the imaginary axis the transformation is

ss pp
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AnalogAnalog Highpass Highpass Filter Design Filter Design

Ω
ΩΩ

−=Ω ˆ
ˆ pp
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sΩ− ˆ pΩ̂sΩ̂pΩ− ˆ
Highpass
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Analog Analog HighpassHighpass Filter Design Filter Design
• Example - Design an analog Butterworth

highpass filter with the specifications:
      kHz,           kHz,                dB,
        dB

• Choose
• Then

• Analog lowpass filter specifications:            ,
           ,                dB,              dB

4=pF 1=sF
40=αs
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AnalogAnalog Highpass Highpass Filter Design Filter Design
• Code fragments used

[N, Wn] = buttord(1, 4, 0.1, 40, ‘s’);
[B, A] = butter(N, Wn, ‘s’);
[num, den] = lp2hp(B, A, 2*pi*4000);

• Gain plots
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Analog Analog BandpassBandpass Filter Filter
DesignDesign

• Spectral Transformation

where        is the passband edge frequency
of   , and and         are the lower
and upper passband edge frequencies of
desired bandpass filter
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AnalogAnalog Bandpass Bandpass Filter Filter
DesignDesign

• On the imaginary axis the transformation is

where                            is the width of
passband and          is the passband center
frequency of the bandpass filter

• Passband edge frequency          is mapped
into    and           , lower and upper
passband edge frequencies

w

o
p BΩ
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AnalogAnalog Bandpass Bandpass Filter Filter
DesignDesign
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Analog Analog BandpassBandpass Filter Filter
DesignDesign

• Stopband edge frequency         is mapped
into    and            , lower and upper
stopband edge frequencies

• Also,

• If bandedge frequencies do not satisfy the
above condition, then one of the frequencies
needs to be changed to a new value so that
the condition is satisfied

sΩ±
1ˆ sΩm 2ˆ sΩ±

2121
2 ˆˆˆˆˆ ssppo ΩΩ=ΩΩ=Ω
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AnalogAnalog Bandpass Bandpass Filter Filter
DesignDesign

• Case 1:
To make                                we can either
increase any one of the stopband edges or
decrease any one of the passband edges as
shown below

2121 ˆˆˆˆ sspp ΩΩ>ΩΩ

1ˆ pΩ 2ˆ pΩ1ˆ sΩ 2ˆ sΩ

→ →

←←

Ω̂

2121 ˆˆˆˆ sspp ΩΩ=ΩΩ

Passband

Stopband Stopband
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AnalogAnalog Bandpass Bandpass Filter Filter
DesignDesign

(1)  Decrease        to
larger passband and shorter 

 leftmost transition band
(2) Increase        to

No change in passband and shorter
leftmost transition band

1ˆ pΩ

1ˆ sΩ

221 ˆ/ˆˆ pss ΩΩΩ

221 ˆ/ˆˆ spp ΩΩΩ
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AnalogAnalog Bandpass Bandpass Filter Filter
DesignDesign

• Note:  The condition
can also be satisfied by decreasing
which is not acceptable as the passband is
reduced from the desired value

• Alternately, the condition can be satisfied
by increasing         which is not acceptable
as the rightmost transition band is increased

2121
2 ˆˆˆˆˆ ssppo ΩΩ=ΩΩ=Ω

2ˆ pΩ

2ˆ sΩ
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AnalogAnalog Bandpass Bandpass Filter Filter
DesignDesign

• Case 2:
To make                                we can either
decrease any one of the stopband edges or
increase any one of the passband edges as
shown below

2121 ˆˆˆˆ sspp ΩΩ<ΩΩ

1ˆ pΩ 2ˆ pΩ1ˆ sΩ 2ˆ sΩ

→ →

←
←

Ω̂

2121 ˆˆˆˆ sspp ΩΩ=ΩΩ
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Stopband Stopband
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Analog Analog BandpassBandpass Filter Filter
DesignDesign

(1)  Increase        to
larger passband and shorter 

 rightmost transition band
(2) Decrease        to

No change in passband and shorter
rightmost transition band

2ˆ pΩ

2ˆ sΩ

121 ˆ/ˆˆ pss ΩΩΩ

121 ˆ/ˆˆ spp ΩΩΩ



43
Copyright © 2001, S. K. Mitra

AnalogAnalog Bandpass Bandpass Filter Filter
DesignDesign

• Note:  The condition
can also be satisfied by increasing
which is not acceptable as the passband is
reduced from the desired value

• Alternately, the condition can be satisfied
by decreasing         which is not acceptable
as the leftmost transition band is increased

2121
2 ˆˆˆˆˆ ssppo ΩΩ=ΩΩ=Ω

1ˆ pΩ

1ˆ sΩ
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Analog Analog BandpassBandpass Filter Filter
DesignDesign

• Example - Design an analog elliptic
bandpass filter with the specifications:

       kHz,              kHz,             kHz    
      kHz,             dB,               dB

• Now                             and
• Since                           we choose
                                                         kHz

4ˆ 1 =pF 7ˆ 2 =pF
8ˆ 2 =sF

3ˆ 1 =sF
1=pα 22=sα

6
21 1028ˆˆ ×=pp FF 6

21 1024ˆˆ ×=ss FF

2121 ˆˆˆˆ sspp FFFF >
571428.3ˆ/ˆˆˆ 2211 == pssp FFFF



45
Copyright © 2001, S. K. Mitra

AnalogAnalog Bandpass Bandpass Filter Filter
DesignDesign

• We choose
• Hence

• Analog lowpass filter specifications:            ,
           ,            dB,              dB

1=Ω p

4.1
3)7/25(

924 =
×
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AnalogAnalog Bandpass Bandpass Filter Filter
DesignDesign

• Code fragments used
[N, Wn] = ellipord(1, 1.4, 1, 22, ‘s’);
[B, A] = ellip(N, 1, 22, Wn, ‘s’);
[num, den]

= lp2bp(B, A, 2*pi*4.8989795, 2*pi*25/7);
• Gain plot
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Analog Analog BandstopBandstop Filter Design Filter Design

• Spectral Transformation

where        is the stopband edge frequency
of   , and and         are the lower
and upper stopband edge frequencies of the
desired bandstop filter

sΩ
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AnalogAnalog Bandstop Bandstop Filter Design Filter Design
• On the imaginary axis the transformation is

where                            is the width of
stopband and        is the stopband center
frequency of the bandstop filter

• Stopband edge frequency          is mapped
into    and           , lower and upper
stopband edge frequencies
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Analog Analog BandstopBandstop Filter Design Filter Design
• Passband edge frequency           is mapped

into     and      , lower and upper
passband edge frequencies

• Also,

• If bandedge frequencies do not satisfy the
above condition, then one of the frequencies
needs to be changed to a new value so that
the condition is satisfied

pΩ±
1ˆ pΩm 2ˆ pΩ±

2121
2 ˆˆˆˆˆ ssppo ΩΩ=ΩΩ=Ω
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AnalogAnalog Bandstop Bandstop Filter Design Filter Design
• Case 1:
• To make                                we can either

increase any one of the stopband edges or
decrease any one of the passband edges as
shown below

2121 ˆˆˆˆ sspp ΩΩ>ΩΩ

1ˆ pΩ 2ˆ pΩ1ˆ sΩ 2ˆ sΩ

→ →

←←

Ω̂

2121 ˆˆˆˆ sspp ΩΩ=ΩΩ
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PassbandPassband
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Analog Analog BandstopBandstop Filter Design Filter Design

(1)  Decrease        to
larger high-frequency passband 

and shorter rightmost transition band
(2) Increase        to

No change in passbands and 
shorter rightmost transition band

2ˆ pΩ

2ˆ sΩ

221 ˆ/ˆˆ pss ΩΩΩ

221 ˆ/ˆˆ spp ΩΩΩ
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Analog Analog BandstopBandstop Filter Design Filter Design

• Note:  The condition
can also be satisfied by decreasing
which is not acceptable as the low-
frequency passband is reduced from the
desired value

• Alternately, the condition can be satisfied
by increasing         which is not acceptable
as the leftmost transition band is increased

2121
2 ˆˆˆˆˆ ssppo ΩΩ=ΩΩ=Ω

1ˆ pΩ

1ˆ sΩ
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AnalogAnalog Bandstop Bandstop Filter Design Filter Design
• Case 1:
• To make                                we can either

decrease any one of the stopband edges or
increase any one of the passband edges as
shown below

2121 ˆˆˆˆ sspp ΩΩ<ΩΩ

2121 ˆˆˆˆ sspp ΩΩ=ΩΩ

1ˆ pΩ 2ˆ pΩ1ˆ sΩ 2ˆ sΩ

→ →

← ← Ω̂
Stopband

PassbandPassband
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Analog Analog BandstopBandstop Filter Design Filter Design

(1)  Increase         to
larger passband and shorter 

 leftmost transition band
(2) Decrease        to

No change in passbands and 
shorter leftmost transition band

1ˆ pΩ

1ˆ sΩ

121 ˆ/ˆˆ pss ΩΩΩ

121 ˆ/ˆˆ spp ΩΩΩ
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Analog Analog BandstopBandstop Filter Design Filter Design

• Note:  The condition
can also be satisfied by increasing
which is not acceptable as the high-
frequency passband is decreased from the
desired value

• Alternately, the condition can be satisfied
by decreasing         which is not acceptable
as the stopband is decreased

2121
2 ˆˆˆˆˆ ssppo ΩΩ=ΩΩ=Ω

2ˆ pΩ

2ˆ sΩ
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