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Spectral Transformations ofSpectral Transformations of
IIR Digital FiltersIIR Digital Filters

• Objective - Transform a given lowpass digital
transfer function             to another digital
transfer function              that could be a
lowpass, highpass, bandpass or bandstop filter

•         has been used to denote the unit delay in
the prototype lowpass filter             and
to denote the unit delay in the transformed
filter             to avoid confusion
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Spectral Transformations ofSpectral Transformations of
IIR Digital FiltersIIR Digital Filters

• Unit circles in z- and     -planes defined by
              ,
• Transformation from z-domain to

    -domain given by

• Then
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Spectral Transformations ofSpectral Transformations of
IIR Digital FiltersIIR Digital Filters

• From                , thus                 , hence

• Recall that a stable allpass function A(z)
satisfies the condition
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Spectral Transformations ofSpectral Transformations of
IIR Digital FiltersIIR Digital Filters

• Therefore               must be a stable allpass
function whose general form is
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LowpassLowpass-to--to-LowpassLowpass
Spectral TransformationSpectral Transformation

• To transform a lowpass filter            with a
cutoff frequency       to another lowpass filter

     with a cutoff frequency      , the
transformation is

where α is a function of  the two specified
cutoff frequencies
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LowpassLowpass-to--to-LowpassLowpass
Spectral TransformationSpectral Transformation

• On the unit circle we have

• From the above we get

• Taking the ratios of the above two expressions
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LowpassLowpass-to--to-LowpassLowpass
Spectral TransformationSpectral Transformation

• Solving we get

• Example - Consider the lowpass digital filter

which has a passband from dc to             with
a 0.5 dB ripple

• Redesign the above filter to move the
passband edge to
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LowpassLowpass-to--to-LowpassLowpass
Spectral TransformationSpectral Transformation

• Here

• Hence, the desired lowpass transfer function is
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LowpassLowpass-to--to-LowpassLowpass
Spectral TransformationSpectral Transformation

• The lowpass-to-lowpass transformation

can also be used as highpass-to-highpass,
bandpass-to-bandpass and bandstop-to-
bandstop transformations
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LowpassLowpass-to--to-HighpassHighpass
Spectral TransformationSpectral Transformation

• Desired transformation

• The transformation parameter      is given by

where       is the cutoff frequency of the
lowpass filter and       is the cutoff frequency
of the desired highpass filter
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LowpassLowpass-to--to-HighpassHighpass
Spectral TransformationSpectral Transformation

• Example - Transform the lowpass filter

• with a passband edge at            to a highpass
filter with a passband edge at

• Here
• The desired transformation is
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LowpassLowpass-to--to-HighpassHighpass
Spectral TransformationSpectral Transformation

• The desired highpass filter is
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LowpassLowpass-to--to-HighpassHighpass
Spectral TransformationSpectral Transformation

• The lowpass-to-highpass transformation can
also be used to transform a highpass filter
with a cutoff at         to a lowpass filter with
a cutoff at
and transform a bandpass filter with a center
frequency at         to a bandstop filter with a
center frequency at
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LowpassLowpass-to--to-BandpassBandpass
Spectral TransformationSpectral Transformation

• Desired transformation
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LowpassLowpass-to--to-BandpassBandpass
Spectral TransformationSpectral Transformation

• The parameters       and      are given by

where       is the cutoff frequency of the
lowpass filter, and        and       are the
desired upper and lower cutoff frequencies
of the bandpass filter
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LowpassLowpass-to--to-BandpassBandpass
Spectral TransformationSpectral Transformation

• Special Case - The transformation can be
simplified if

• Then the transformation reduces to

where                   with      denoting the
desired center frequency of the bandpass
filter
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LowpassLowpass-to--to-BandstopBandstop
Spectral TransformationSpectral Transformation

• Desired transformation
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LowpassLowpass-to--to-BandstopBandstop
Spectral TransformationSpectral Transformation

• The parameters       and      are given by

where       is the cutoff frequency of the
lowpass filter, and        and       are the
desired upper and lower cutoff frequencies
of the bandstop filter
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Least Integral-Squared ErrorLeast Integral-Squared Error
Design of FIR FiltersDesign of FIR Filters

• Let                denote the desired frequency
response

• Since               is a periodic function of
with a period       , it can be expressed as a
Fourier series

where
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Least Integral-Squared ErrorLeast Integral-Squared Error
Design of FIR FiltersDesign of FIR Filters

• In general,               is piecewise constant
with sharp transitions between bands

• In which case,             is of infinite length
and noncausal

• Objective - Find a finite-duration
of length 2M+1 whose DTFT
approximates the desired DTFT                in
some sense
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Least Integral-Squared ErrorLeast Integral-Squared Error
Design of FIR FiltersDesign of FIR Filters

• Commonly used approximation criterion -
Minimize the integral-squared error

where
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Least Integral-Squared ErrorLeast Integral-Squared Error
Design of FIR FiltersDesign of FIR Filters

• Using Parseval’s relation we can write

• It follows from the above that       is
minimum when                      for

•      Best finite-length approximation to ideal
infinite-length impulse response in the
mean-square sense is obtained by truncation
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Least Integral-Squared ErrorLeast Integral-Squared Error
Design of FIR FiltersDesign of FIR Filters

• A causal FIR filter with an impulse response
h[n] can be derived from          by delaying:

• The causal FIR filter h[n] has the same
magnitude response as          and its phase
response has a linear phase shift of
radians with respect to that of
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Impulse Responses of IdealImpulse Responses of Ideal
FiltersFilters

• Ideal lowpass filter -

• Ideal highpass filter -
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Impulse Responses of IdealImpulse Responses of Ideal
FiltersFilters

• Ideal bandpass filter -
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Impulse Responses of IdealImpulse Responses of Ideal
FiltersFilters

• Ideal bandstop filter -
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Impulse Responses of IdealImpulse Responses of Ideal
FiltersFilters

• Ideal multiband filter -

0
 

  1  2  3  4

HML(e j )

A5

A 4

A3

A2

A1

,)( k
j

ML AeH =ω

,1 kk ω≤ω≤ω −

Lk ,,2,1 K=

∑
=

+ π
ω⋅−=

L
L

ML n
nAAnh

1
1

)sin()(][
l

ll



28
Copyright © S. K. Mitra

Impulse Responses of IdealImpulse Responses of Ideal
FiltersFilters

• Ideal discrete-time Hilbert transformer -
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Impulse Responses of IdealImpulse Responses of Ideal
FiltersFilters

• Ideal discrete-time differentiator -
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Gibbs Gibbs PhenomenonPhenomenon
• Gibbs phenomenon - Oscillatory behavior in

the magnitude responses of causal FIR filters
obtained by truncating the impulse response
coefficients of ideal filters
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GibbsGibbs Phenomenon Phenomenon
• As can be seen, as the length of the lowpass

filter is increased, the number of ripples in
both passband and stopband increases, with
a corresponding decrease in the ripple
widths

• Height of the largest ripples remain the
same independent of length

• Similar oscillatory behavior observed in the
magnitude responses of the truncated
versions of other types of ideal filters
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GibbsGibbs Phenomenon Phenomenon
• Gibbs phenomenon can be explained by

treating the truncation operation as an
windowing operation:

• In the frequency domain

• where               and              are the DTFTs
of         and         , respectively
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GibbsGibbs Phenomenon Phenomenon
• Thus               is obtained by a periodic

continuous convolution of                with
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GibbsGibbs Phenomenon Phenomenon

• If              is a very narrow pulse centered at
    (ideally a delta function) compared to

variations in               , then               will
approximate                very closely

• Length 2M+1 of w[n] should be very large
• On the other hand, length 2M+1 of

should be as small as possible to reduce
computational complexity
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GibbsGibbs Phenomenon Phenomenon
• A rectangular window is used to achieve

simple truncation:

• Presence of oscillatory behavior in
is basically due to:
– 1)             is infinitely long and not absolutely

summable, and hence filter is unstable
– 2)  Rectangular window has an abrupt transition

to zero
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GibbsGibbs Phenomenon Phenomenon
• Oscillatory behavior can be explained by

examining the DTFT                of           :

•               has a main lobe centered at
• Other ripples are called sidelobes
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GibbsGibbs Phenomenon Phenomenon
• Main lobe of                  characterized by its

width                     defined by first zero
crossings on both sides of

• As M increases, width of main lobe
decreases as desired

• Area under each lobe remains constant
while width of each lobe decreases with an
increase in M

• Ripples in                around the point of
discontinuity occur more closely but with
no decrease in amplitude as M increases
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GibbsGibbs Phenomenon Phenomenon
• Rectangular window has an abrupt transition

to zero outside the range                      , which
results in Gibbs phenomenon in

• Gibbs phenomenon can be reduced either:
(1) Using a window that tapers smoothly to
zero at each end, or
(2) Providing a smooth transition from
passband to stopband in the magnitude
specifications
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