Spectral Transformations of
IIR Digital Filters

e Objective - Transform agiven lowpass digital
transfer function G, (z) to another digital
transfer function Gy (2) that could be a
lowpass, highpass, bandpass or bandstop filter

e 7™ has been used to denote the unit delay in
the prototype lowpass filter G, (z) and 2
to denote the unit delay in the transformed
filter Gy (2) to avoid confusion
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Spectral Transformations of
IIR Digital Filters

o Unit circlesinz- and 2 -planes defined by
z=gel®, 92=¢l®
e Transformation from z-domain to
2-domain given by
2=F(2)
e Then
Gp(2) =G {F(2)}
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Spectral Transformations of
IIR Digital Filters

e From z=F(2), thus |z =|F(2)|, hence
>1 if lz>1
F(2)i=1 if z=1
<1 If z<1

* Recall that a stable allpass function A(2)
satisfies the condition
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Spectral Transformations of
IIR Digital Filters

<1 iflz>1
A(2)<=1 if z=1
>1 1f Zz<1

 Thereforel/F (z) must be a stable allpass
function whose general formis

L —+H£1 sz oy <1
F(Z) =1\ Z 0.
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Lowpass-to-Lowpass
Spectral Transformation

o transform alowpass filter G, (z) with a
cutoff frequency o, to another lowpass filter
G, (2) with a cutoff frequency &, the
transformation is

2_1 _ 1 1l-o2

F(2) 2-o
where o Isafunction of the two specified
cutoff frequencies

Copyright © S. K. Mitra
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Lowpass-to-Lowpass

Spectral Transformation
 On the unit circle we have

oio_€%-a

1-ae 1?
e From the above we get
o 0 -0 _
e 1°51=8 "~ 11-(1+q). i
1-ae 1? 1-ae 1?

o Taking the ratios of the above two expressions

tan(w/ 2) = G+ gjtan(m/z)
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Lowpass-to-Lowpass

Spectral Transformation
» Solvingweget _ sin((og - &)/ 2)
sin((og + ®,)/2)
 Example - Consider the lowpass digital filter
0.0662(1+ z%)*

G (2) =
(2 (1-0.2593z 1)(1-0.6763z * + 0.3917Z %)

which has a passband from dc to 0.25x with
a0.5dB ripple

* Redesign the above filter to move the
passband edge to 0.35x
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Lowpass-to-Lowpass
Spectral Transformation

e Here :
o= - INO0SM) _ 5 1934
sin(0.3n)

e Hence, the desired lowpass transfer function is
Gp(2) =G (2)

a_ 2'+0.1934

1+0.1934 2"
o |
10+ B
g 6@ G0
-(% 20 \\
-30+ \
40 \

0 0.2 04 0.6 0.8 1

o/t . :
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Lowpass-to-Lowpass

Spectral Transformation

he |lowpass-to-lowpass transformation
Z_]_ _ 1 _ 1: oLz
F(2) 2-o
can also be used as highpass-to-highpass,

bandpass-to-bandpass and bandstop-to-
bandstop transformations

Copyright © S. K. Mitra
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Lowpass-to-Highpass
Spectral Transformation

e Desired transformation

Z_]__ 2_1-I-OL
- 1

1+ 2

e Thetransformation parameter « isgiven by
_ cos((og + D)/ 2)

) cos{ (¢ —¢)/2)

where o, IS the cutoff frequency of the

lowpass filter and ®,. is the cutoff frequency
of the desired highpass filter

04
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Lowpass-to-Highpass
Spectral Transformation
 Example - Transform the lowpass filter

G, (2)— 0.0662(1+ z4)*
S (1-0.2593771)(1-0.6763Z7 1+ 0.3917Z 2)

e With apasshand edge at 0.25n to a highpass
filter with a passband edge at 0.55w

e Here o =—-c05(0.4n)/cos(0.15r) = —0.3468

e The desired transformation Is

1 2" —0.3468

" 1-0.346827%
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Lowpass-to-Highpass
Spectral Transformation

e The desired highpassfilter is

Gp(2)=G(2),._ 2'-03468

1-0.34682™

7=

0
T (e s

B e e

Gain, dB

S S S

oo

0 0.2m 0.47m 0.6m 0.8m
12 Normalized frequency
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Lowpass-to-Highpass
Spectral Transformation

he |lowpass-to-highpass transformation can
also be used to transform a highpass filter
with acutoff af o, to alowpassfilter with

a cutoff at @,

and transform a bandpass filter with a center
frequency at ®, toabandstop filter with a
center frequency at @,
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Lowpass-to-Bandpass

Spectral Transformation
e Desired transformation

2 20L[3 2_1 3-1

14
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Lowpass-to-Bandpass
Spectral Transformation

he parameters o and p are given by
_ COS(((I)CZ T 6)01) / 2)
COS(((I)CZ - (lbcl) / 2)
B = cot((d¢p — Bc)/ 2)tan(w/ 2)
where w, IS the cutoff frequency of the

lowpass filter, and ®, and®., are the

desired upper and lower cutoff frequencies
of the bandpass filter

04
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Lowpass-to-Bandpass
Spectral Transformation

o Special Case - The transformation can be
smplified If @, = 0o — Dy
e Then the transformation reduces to

1 ~—1 2_1 —

Z =-2
1-02 "
where o = cos®, With @, denoting the

desired center frequency of the bandpass
filter

16
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Lowpass-to-Bandstop

Spectral Transformation
e Desired transformation

17
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Lowpass-to-Bandstop
Spectral Transformation

he parameters o and p are given by
_ COS(((I)CZ T 6)01) / 2)
COS(((I)CZ - (lbcl) / 2)
= ta”((®c2 —®¢)/ 2) tan(w¢ / 2)
where o Isthe cutoff frequency of the

lowpass filter, and ®, and®., are the

desired upper and lower cutoff frequencies
of the bandstop filter

04
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Least Integral-Squared Error

Design of FIR Filters
o Let Hy(e!®) denote the desired frequency
response
e SinceHg (e)®)is a periodic function of ®
with aperiod 2r, It can be expressed as a
Fourier series )
Hq ()= Xhy[n]e”1*"

N=—0o0

where

] =21 THy (e/®)el®dp, —co<n<w

T

19
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Least Integral-Squared Error
Design of FIR Filters

» Ingeneral, H, (e'®)is piecewise constant
with sharp transitions between bands

» Inwhich case, {hy[n]} is of infinite length
and noncausal

» Objective - Find afinite-duration{h[n]}
of length 2M+1 whose DTFT H,(e!®)

approximates the desired DTFT Hd (1) in
some sense
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Least Integral-Squared Error
Design of FIR Filters

e Commonly used approximation criterion -
Minimize the integral-squared error

1 TC
b= —
27‘[_'[75
where ’
H (/)= Y h[n]e /"
n=—M

o jo 2
H (€") — Hy(e)) "do

21
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Least Integral-Squared Error
Design of FIR Filters

o Using Parseval’ srelation we can write

®= ¥ h[n]-hy[n]?

n——oo

= Z\h[[n] hy[n]” + > R+ SR

N=—o0 n=M +1
o Itfollowsfrom the abovethat @ IS

minimum whenh[n] =hy[n] for—-M <n<M

= Bedt finite-length approximation to ideal
Infinite-length impulse response in the
mean-sguare sense Is obtained by truncation

Copyright © S. K. Mitra
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Least Integral-Squared Error
Design of FIR Filters

* A causal FIR filter with an impulse response
h[n] can be derived from h[n] by delaying:

hn]=h[n-M]

e The causal FIR filter h[n] has the same
magnitude response ash[n] and its phase
response has alinear phase shift of ®M
radians with respect to that of h[n]

23
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Impulse Responses of |deal

 |deal lowpassfilter -

1

Hip(e! )

c O c

 |deal highpassfilter -

Hip(e! )

1

24

0

Filters
hpln] = 02el! o <n<o
6}
i ) -, nh=0
el = sin(o.N) 0
— — , NF
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Impulse Responses of |deal

Filters

 |deal bandpassfilter -

hgp[N] =+

Hep(e! )

11

— c2— cl cl 2

Sin(ogoN) _Sin(owgN)

™ ™

We2 W
7T T '’

n=0

n=0
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Impulse Responses of |deal

Filters
 |deal bandstop filter -

Hes(e! )

- 1 —

— c2— c cl c2

1_ (o ; Oc1) | n=0
th[n] =9 - :
SiNn(w.N)  SiN(woN)
nﬁ B nﬁ , =0
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Impulse Responses of |deal
Filters
+ Ideal multiband filter -

Hy (€ )

Hu (61°) = A,

D1 SO O,

P IC S

S n(ooLn)

hML[n] — Z(Aé Aé+1)

27
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Impulse Responses of |deal

Filters

e |deal discrete-time Hilbert transformer -

Hyr (')

Nyr[n] =+

(j, —-m<w<O0
= <

-], O<o<m

(0, forn even

28

2/tn, for n odd

\
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Impulse Responses of |deal
Filters
e |deal discrete-time differentiator -

HD”:(ej(D): j(D, OS‘(D‘STC

0, n=0

hpie[N] =1 cosnn

= n<0

\

29
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Gibbs Phenomenon

 Gibbs phenomenon - Oscillatory behavior In
the magnitude responses of causal FIR filters
obtained by truncating the impul se response
coefficients of ideal filters

1.5

-~ N=20
- N=60

o

Magnitude
o
(O

o

0.2 04 0.6 0.8 1
oln

o
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Gibbs Phenomenon

e Ascan be seen, asthe length of the lowpass
filter Isincreased, the number of ripplesin
both passband and stopband increases, with
a corresponding decrease In the ripple
widths

 Heaight of the largest ripples remain the

same independent of length

o Similar oscillatory behavior observed in the

magnitude responses of the truncated
versions of other types of ideal filters
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Gibbs Phenomenon

* Gilbbs phenomenon can be explained by
treating the truncation operation as an
windowing operation:

[n] = hy[n]-wn]

* Inthe frequency domain

i 1 TU : i (o
H(e") = [Hq (") ¥ (/") do

e Where H; (ej“’) and ‘P(ej‘”) arethe DTFTs
of h[n] andw{n], respectively

32
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Gibbs Phenomenon

e Thus Ht(ej“’) IS obtained by aperiodic
continuous convolution of H(e'®) with
¥ (e!®)

I ",H.:ﬂﬁjm)

‘ F j[L—in)
Yied (W@, ‘-I-E:'..Lm{ T !
! ‘ “;‘ W=7

TIE ﬂp ?h o i|I T‘ i {p

e

w PV
- U We T -T e
Fie iR,
PieJl g O<w<uy
W=
© Acaij;
f”““f””";‘hg:‘“‘t‘“"‘" f M;;”F““‘"
—li %) T -7 — i} b
(a)

H rl:ej‘u-‘]l

| \
33 —= f ™ e

(b) Copyright © S. K. Mitra



Gibbs Phenomenon

o If W(e!®)isavery narrow pulse centered at
o = 0 (ideally a delta function) compared to
variationsin H4(e'®), then H, (e!®) will
approximate H 4 (e'®) very closely

e Length 2M+1 of w[n] should be very large

e On the other hand, length 2M+1 of h[n]
should be as small as possible to reduce

computational complexity

34
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Gibbs Phenomenon
* A rectangular window Is used to achieve
simple truncation:
1, 0<|n<M
0, otherwise

* Presence of oscillatory behavior In Ht(ej“’)
IS basically due to:

— 1) hy[n] isinfinitely long and not absolutely
summable, and hence filter is unstable

— 2) Rectangular window has an abrupt transition
to zero

Wg[N] =+

35
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Gibbs Phenomenon

* Oscillatory behavior can be explained by
examining the DTFT ¥ (e'®) of wg[n]:

Rectangular window

30

Amplitude
= N
> 5 __¢C
= =
1 =
N O
= L L

0.5

10 ‘
-1 -05 0
olr

« Yy (ejm) has amain lobe centered at w =0
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Gibbs Phenomenon

Main lobe of Wg(e!®) characterized by its
width4rx/(2M +1) defined by first zero
crossings on both sidesof w=0

As M increases, width of main lobe
decreases as desired

Area under each lobe remains constant
while width of each lobe decreases with an
INncrease in M

Ripplesin H,(e'®) around the point of
discontinuity occur more closely but with
no decrease in amplitude as M Increases

Copyright © S. K. Mitra



38

Gibbs Phenomenon

* Rectangular window has an abrupt transition
to zero outside therange — M <n< M, which
resultsin Gibbs phenomenonin H, (e!®)

* Gibbs phenomenon can be reduced either:

(1) Using awindow that tapers smoothly to
zero at each end, or

(2) Providing a smooth transition from
passhand to stopband in the magnitude
specifications
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