- Objective Transform a given lowpass digital transfer function $G_L(z)$ to another digital transfer function $G_D(\hat{z})$ that could be a lowpass, highpass, bandpass or bandstop filter
- z^{-1} has been used to denote the unit delay in the prototype lowpass filter $G_L(z)$ and \hat{z}^{-1} to denote the unit delay in the transformed filter $G_D(\hat{z})$ to avoid confusion

• Unit circles in z- and \hat{z} -planes defined by

$$z = e^{j\omega}$$
, $\hat{z} = e^{j\hat{\omega}}$

Transformation from z-domain to
 z-domain given by

$$z = F(\hat{z})$$

Then

$$G_D(\hat{z}) = G_L\{F(\hat{z})\}$$

• From $z = F(\hat{z})$, thus $|z| = |F(\hat{z})|$, hence

$$|F(\hat{z})|$$
 $\begin{cases} >1, & \text{if } |z| > 1 \\ =1, & \text{if } |z| = 1 \\ <1, & \text{if } |z| < 1 \end{cases}$

• Recall that a stable allpass function A(z) satisfies the condition

$$|A(z)|$$
 $\begin{cases} <1, & \text{if } |z| > 1 \\ =1, & \text{if } |z| = 1 \\ >1, & \text{if } |z| < 1 \end{cases}$

• Therefore $1/F(\hat{z})$ must be a stable allpass function whose general form is

$$\frac{1}{F(\hat{z})} = \pm \prod_{\ell=1}^{L} \left(\frac{1 - \alpha_{\ell}^* \hat{z}}{\hat{z} - \alpha_{\ell}} \right), \quad |\alpha_{\ell}| < 1$$

• To transform a lowpass filter $G_L(z)$ with a cutoff frequency ω_c to another lowpass filter $G_D(\hat{z})$ with a cutoff frequency $\hat{\omega}_c$, the transformation is

$$z^{-1} = \frac{1}{F(\hat{z})} = \frac{1 - \alpha \hat{z}}{\hat{z} - \alpha}$$

where α is a function of the two specified cutoff frequencies

• On the unit circle we have

$$e^{-j\omega} = \frac{e^{-j\hat{\omega}} - \alpha}{1 - \alpha e^{-j\hat{\omega}}}$$

• From the above we get

$$e^{-j\omega} \mp 1 = \frac{e^{-j\hat{\omega}} - \alpha}{1 - \alpha e^{-j\hat{\omega}}} \mp 1 = (1 \pm \alpha) \cdot \frac{e^{-j\hat{\omega}} - 1}{1 - \alpha e^{-j\hat{\omega}}}$$

Taking the ratios of the above two expressions

$$\tan(\omega/2) = \left(\frac{1+\alpha}{1-\alpha}\right) \tan(\hat{\omega}/2)$$

- Solving we get $\alpha = \frac{\sin((\omega_c \hat{\omega}_c)/2)}{\sin((\omega_c + \hat{\omega}_c)/2)}$
- Example Consider the lowpass digital filter

$$G_L(z) = \frac{0.0662(1+z^{-1})^3}{(1-0.2593z^{-1})(1-0.6763z^{-1}+0.3917z^{-2})}$$
 which has a passband from dc to 0.25π with a 0.5 dB ripple

• Redesign the above filter to move the passband edge to 0.35π

• Here

$$\alpha = -\frac{\sin(0.05\pi)}{\sin(0.3\pi)} = -0.1934$$

Hence, the desired lowpass transfer function is

$$G_D(\hat{z}) = G_L(z)|_{z^{-1} = \frac{\hat{z}^{-1} + 0.1934}{1 + 0.1934 \,\hat{z}^{-1}}}$$

The lowpass-to-lowpass transformation

$$z^{-1} = \frac{1}{F(\hat{z})} = \frac{1 - \alpha \hat{z}}{\hat{z} - \alpha}$$

can also be used as highpass-to-highpass, bandpass-to-bandpass and bandstop-to-bandstop transformations

Desired transformation

$$z^{-1} = -\frac{\hat{z}^{-1} + \alpha}{1 + \alpha \, \hat{z}^{-1}}$$

• The transformation parameter α is given by

$$\alpha = -\frac{\cos((\omega_c + \hat{\omega}_c)/2)}{\cos((\omega_c - \hat{\omega}_c)/2)}$$

where ω_c is the cutoff frequency of the lowpass filter and $\hat{\omega}_c$ is the cutoff frequency of the desired highpass filter

• Example - Transform the lowpass filter

$$G_L(z) = \frac{0.0662(1+z^{-1})^3}{(1-0.2593z^{-1})(1-0.6763z^{-1}+0.3917z^{-2})}$$

- with a passband edge at 0.25π to a highpass filter with a passband edge at 0.55π
- Here $\alpha = -\cos(0.4\pi)/\cos(0.15\pi) = -0.3468$
- The desired transformation is

$$z^{-1} = -\frac{\hat{z}^{-1} - 0.3468}{1 - 0.3468\hat{z}^{-1}}$$

The desired highpass filter is

$$G_D(\hat{z}) = G(z)|_{z^{-1} = -\frac{\hat{z}^{-1} - 0.3468}{1 - 0.3468 \, \hat{z}^{-1}}}$$

• The lowpass-to-highpass transformation can also be used to transform a highpass filter with a cutoff at ω_c to a lowpass filter with a cutoff at $\hat{\omega}_c$

and transform a bandpass filter with a center frequency at ω_o to a bandstop filter with a center frequency at $\hat{\omega}_o$

Desired transformation

$$z^{-1} = -\frac{\hat{z}^{-2} - \frac{2\alpha\beta}{\beta + 1}\hat{z}^{-1} + \frac{\beta - 1}{\beta + 1}}{\frac{\beta - 1}{\beta + 1}\hat{z}^{-2} - \frac{2\alpha\beta}{\beta + 1}\hat{z}^{-1} + 1}$$

• The parameters α and β are given by

$$\alpha = \frac{\cos((\hat{\omega}_{c2} + \hat{\omega}_{c1})/2)}{\cos((\hat{\omega}_{c2} - \hat{\omega}_{c1})/2)}$$
$$\beta = \cot((\hat{\omega}_{c2} - \hat{\omega}_{c1})/2)\tan(\omega_c/2)$$

where ω_c is the cutoff frequency of the lowpass filter, and $\hat{\omega}_{c1}$ and $\hat{\omega}_{c2}$ are the desired upper and lower cutoff frequencies of the bandpass filter

- Special Case The transformation can be simplified if $\omega_c = \hat{\omega}_{c2} \hat{\omega}_{c1}$
- Then the transformation reduces to

$$z^{-1} = -\hat{z}^{-1} \frac{\hat{z}^{-1} - \alpha}{1 - \alpha \,\hat{z}^{-1}}$$

where $\alpha = \cos \hat{\omega}_o$ with $\hat{\omega}_o$ denoting the desired center frequency of the bandpass filter

Lowpass-to-Bandstop Spectral Transformation

Desired transformation

$$z^{-1} = \frac{\hat{z}^{-2} - \frac{2\alpha\beta}{1+\beta}\hat{z}^{-1} + \frac{1-\beta}{1+\beta}}{\frac{1-\beta}{1+\beta}\hat{z}^{-2} - \frac{2\alpha\beta}{1+\beta}\hat{z}^{-1} + 1}$$

Lowpass-to-Bandstop Spectral Transformation

• The parameters α and β are given by

$$\alpha = \frac{\cos((\hat{\omega}_{c2} + \hat{\omega}_{c1})/2)}{\cos((\hat{\omega}_{c2} - \hat{\omega}_{c1})/2)}$$
$$\beta = \tan((\hat{\omega}_{c2} - \hat{\omega}_{c1})/2)\tan(\omega_c/2)$$

where ω_c is the cutoff frequency of the lowpass filter, and $\hat{\omega}_{c1}$ and $\hat{\omega}_{c2}$ are the desired upper and lower cutoff frequencies of the bandstop filter

- Let $H_d(e^{j\omega})$ denote the desired frequency response
- Since $H_d(e^{j\omega})$ is a periodic function of ω with a period 2π , it can be expressed as a Fourier series

$$H_d(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h_d[n]e^{-j\omega n}$$

where

$$h_d[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega, \quad -\infty \le n \le \infty$$

- In general, $H_d(e^{j\omega})$ is piecewise constant with sharp transitions between bands
- In which case, $\{h_d[n]\}$ is of infinite length and noncausal
- Objective Find a finite-duration $\{h_t[n]\}$ of length 2M+1 whose DTFT $H_t(e^{j\omega})$ approximates the desired DTFT $H_d(e^{j\omega})$ in some sense

 Commonly used approximation criterion -Minimize the integral-squared error

$$\Phi = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| H_t(e^{j\omega}) - H_d(e^{j\omega}) \right|^2 d\omega$$

where

$$H_t(e^{j\omega}) = \sum_{n=-M}^{M} h_t[n]e^{-j\omega n}$$

• Using Parseval's relation we can write

$$\begin{split} \Phi &= \sum_{n=-\infty}^{\infty} \left| h_t[n] - h_d[n] \right|^2 \\ &= \sum_{n=-M}^{M} \left| h_t[n] - h_d[n] \right|^2 + \sum_{n=-\infty}^{-M-1} h_d^2[n] + \sum_{n=M+1}^{\infty} h_d^2[n] \end{split}$$

- It follows from the above that Φ is minimum when $h_t[n] = h_d[n]$ for $-M \le n \le M$
- → Best finite-length approximation to ideal infinite-length impulse response in the mean-square sense is obtained by truncation

• A causal FIR filter with an impulse response h[n] can be derived from $h_t[n]$ by delaying: $h[n] = h_t[n-M]$

• The causal FIR filter h[n] has the same magnitude response as $h_t[n]$ and its phase response has a linear phase shift of ωM radians with respect to that of $h_t[n]$

• Ideal lowpass filter -

$$H_{LP}(e^j)$$

$$h_{LP}[n] = \frac{\sin \omega_c n}{\pi n}, -\infty \le n \le \infty$$

• Ideal highpass filter -

$$H_{HP}(e^j)$$

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

$$\frac{1}{m} h_{HP}[n] = \begin{cases}
1 - \frac{\omega_c}{\pi}, & n = 0 \\
-\frac{\sin(\omega_c n)}{\pi n}, & n \neq 0
\end{cases}$$

Ideal bandpass filter -

$$H_{\mathrm{BP}}(\mathrm{e}^{j})$$

$$h_{BP}[n] = \begin{cases} \frac{\sin(\omega_{c2}n)}{\pi n} - \frac{\sin(\omega_{c1}n)}{\pi n}, & n \neq 0 \\ \frac{\omega_{c2}}{\pi} - \frac{\omega_{c1}}{\pi}, & n = 0 \end{cases}$$

Ideal bandstop filter -

$$h_{BS}[n] = \begin{cases} 1 - \frac{(\omega_{c2} - \omega_{c1})}{\pi}, & n = 0\\ \frac{\sin(\omega_{c1}n)}{\pi n} - \frac{\sin(\omega_{c2}n)}{\pi n}, & n \neq 0 \end{cases}$$

• Ideal multiband filter -

$$H_{ML}(e^j)$$
 A_5
 A_1
 A_4
 A_2
 A_3
 0
 1
 2
 3
 4

$$H_{ML}(e^{j\omega}) = A_k,$$

$$\omega_{k-1} \le \omega \le \omega_k,$$

 $k = 1, 2, \dots, L$

$$h_{ML}[n] = \sum_{\ell=1}^{L} (A_{\ell} - A_{\ell+1}) \cdot \frac{\sin(\omega_{L}n)}{\pi n}$$

• Ideal discrete-time Hilbert transformer -

$$H_{HT}(e^{j\omega}) = \begin{cases} j, & -\pi < \omega < 0 \\ -j, & 0 < \omega < \pi \end{cases}$$

$$h_{HT}[n] = \begin{cases} 0, & \text{for } n \text{ even} \\ 2/\pi n, & \text{for } n \text{ odd} \end{cases}$$

Ideal discrete-time differentiator -

$$H_{DIF}(e^{j\omega}) = j\omega, \quad 0 \le |\omega| \le \pi$$

$$h_{DIF}[n] = \begin{cases} 0, & n = 0\\ \frac{\cos \pi n}{n}, & n \neq 0 \end{cases}$$

• Gibbs phenomenon - Oscillatory behavior in the magnitude responses of causal FIR filters obtained by truncating the impulse response coefficients of ideal filters

- As can be seen, as the length of the lowpass filter is increased, the number of ripples in both passband and stopband increases, with a corresponding decrease in the ripple widths
- Height of the largest ripples remain the same independent of length
- Similar oscillatory behavior observed in the magnitude responses of the truncated versions of other types of ideal filters

• Gibbs phenomenon can be explained by treating the truncation operation as an windowing operation:

$$h_t[n] = h_d[n] \cdot w[n]$$

• In the frequency domain

$$H_t(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\phi}) \Psi(e^{j(\omega-\phi)}) d\phi$$

• where $H_t(e^{j\omega})$ and $\Psi(e^{j\omega})$ are the DTFTs of $h_t[n]$ and w[n], respectively

• Thus $H_t(e^{j\omega})$ is obtained by a periodic continuous convolution of $H_d(e^{j\omega})$ with

 $\Psi(e^{j\omega})$

- If $\Psi(e^{j\omega})$ is a very narrow pulse centered at $\omega = 0$ (ideally a delta function) compared to variations in $H_d(e^{j\omega})$, then $H_t(e^{j\omega})$ will approximate $H_d(e^{j\omega})$ very closely
- Length 2M+1 of w[n] should be very large
- On the other hand, length 2M+1 of $h_t[n]$ should be as small as possible to reduce computational complexity

• A rectangular window is used to achieve simple truncation:

$$w_R[n] = \begin{cases} 1, & 0 \le |n| \le M \\ 0, & \text{otherwise} \end{cases}$$

- Presence of oscillatory behavior in $H_t(e^{j\omega})$ is basically due to:
 - -1) $h_d[n]$ is infinitely long and not absolutely summable, and hence filter is unstable
 - 2) Rectangular window has an abrupt transition to zero

• Oscillatory behavior can be explained by examining the DTFT $\Psi_R(e^{j\omega})$ of $w_R[n]$:

- $\Psi_R(e^{j\omega})$ has a main lobe centered at $\omega = 0$
- Other ripples are called sidelobes

- Main lobe of $\Psi_R(e^{j\omega})$ characterized by its width $4\pi/(2M+1)$ defined by first zero crossings on both sides of $\omega=0$
- As *M* increases, width of main lobe decreases as desired
- Area under each lobe remains constant while width of each lobe decreases with an increase in *M*
- Ripples in $H_t(e^{j\omega})$ around the point of discontinuity occur more closely but with no decrease in amplitude as M increases

- Rectangular window has an abrupt transition to zero outside the range $-M \le n \le M$, which results in Gibbs phenomenon in $H_t(e^{j\omega})$
- Gibbs phenomenon can be reduced either:
 - (1) Using a window that tapers smoothly to zero at each end, or
 - (2) Providing a smooth transition from passband to stopband in the magnitude specifications