Analysis of Arithmetic
Round-Off Errors

* In the fixed-point implementation of a
digital filter only the result of the
multiplication operation Is quantized

* Therepresentation of a practical multiplier
with the quantizer at its output IS shown
below

] ——4 > 0 b O
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Analysis of Arithmetic
Round-Off Errors

e The statistical model of the multiplier with
the quantizer at its output Is as shown below

0
u[n]—»b vin| -@—»’\\/[n]

€[]

* The output v[n] of the ideal multiplier is
guantized to avalue V[n] , where

vIn]=vn]+e,[n]
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Analysis of Arithmetic
Round-Off Errors

e For analysis purposes, the following
assumptions are made;
(1) The error sequence{e,[n]} isasample
seguence of a stationary white noise
process, with each sample €,[n] being
uniformly distributed over the range of the
guantization error
(2) The error sequence{e,[n]} is
uncorrelated with the sequence {v[n]}, the
Input sequence {X[n]}, and all other
guantization noise sources
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Analysis of Arithmetic
Round-Off Errors

» Recall that the assumption of {e,[n]} being
uncorrelated with {v[n]} holdsonly for

rounding and two’ s-complement truncation
m

1
Representation of a E 2 % v,[n]

digital filter structure . Q
with product round-off . 4
° o n’kg

before summation

X N]— — y[n]

T

uc[n]
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Analysis of Arithmetic
Round-Off Errors

* The noise analysis model also shows the
Internal r-th branch node associated with
the signal variable u,[n] that needs to be
scaled to prevent overflow at this node

e These nodes are typically the inputs to the
multipliers as indicated below

u,[n] ~< ﬁ%@)—' ve[n]

Copyright © S. K. Mitra




Analysis of Arithmetic
Round-Off Errors

o Indiqgital filters employing two’s-
complement arithmetic, these nodes are
outputs of adders forming sums of products,
as here the sums will still have the correct
values even though some of the products
and/or partial sums overflow

e |t 1sassumed the error sources are
statistically independent of each other and
thus, each error source devel ops a round-off
noise at the output of the digital filter
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Analysis of Arithmetic
Round-Off Errors

Statistical model of a e/[n]
digital filter structure | M
with product round-offs | v,[n]
before summation * ¢
Tk,
n]— — yIn]
u,[n]
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Analysis of Arithmetic
Round-Off Errors

Notations:

f.[n] - impulse response from the digital
filter input to the r-th branch node

9,[n] - impulse response from the input of
the ¢-th adder to the digital filter output

F (2)=Z f,[n]} - z-transform of f,[n],
called the scaling transfer function

G,(z) =Z{g,[n]}- ztransform of g,[N],
called the noise transfer function
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Analysis of Arithmetic
Round-Off Errors

« If &2 denotesthe variance of each
Individual noise source at the output of each
multiplier, the variance of e,[n] iIssimply kgag
 Variance of the output noise caused by €[ N]
IS then given by

63 - _kf(zlnj ieg (2)G, (1Y) zldz)

=035 ke(zln_? Gy (eiw)zdco)
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Analysis of Arithmetic
Round-Off Errors

o |f there are L such addersinthedigital filter
structure, the total output noise power due
to all product round-offsis given by

2 2 L 1
0, =0g gzzllkg (27[] in (2)G, (z_l) zldz)

e If product round-off is carried out after the
summation of products, then
2 2 S 1 1y -1
oS =0 —— 4G, (2)G,(z 7))z "dz
y ogl(zﬂji (G (z7) )

1
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Analysis of Arithmetic
Round-Off Errors

Representation of adigital
filter structure with product
round-offs after summation

m

4D1

Q
m, | Veln]

] —

— y[n]

11

dl

] uc[n]
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Analysis of Arithmetic
Round-Off Errors

 Example - For the first-order digital filter
structure shown below on the left, the
model for the product round-off error
analysis Is shown on the right

X[ —@ el @ e S

z_1 z_1

04

%47 ea[n] 4@4—<|—

12 . .
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Analysis of Arithmetic
Round-Off Errors

From the noise analysis model it can be
seen that the noise transfer functionG,, (2)
IS the same as the filter transfer function
H(2), i.e,

G,()=H(@ =%,
Thus, the output noise variance due to the

product round-off is same as that due to

Input quantization computed earlier:

2
2 _ Op

Y 1—0(2

0)
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Analysis of Arithmetic
Round-Off Errors

e The quantity Gyz’n = 072/03 Is called the
noise gain or the normalized round-off
noise variance

« Example - We now evaluate the output
noise power of the direct form |l realization
of a causal second-order transfer function:

Y(2) z2

X(2) Z2+az+a,

H(2) =

14 . .
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Analysis of Arithmetic
Round-Off Errors

e Thedirect form Il realization 1s shown
below on the left and the model for error
analysis is shown on the right

15 _ _
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Analysis of Arithmetic
Round-Off Errors

* Thenoisetransfer functions G, (z) and
G,,(2) are same as the transfer function H(2)
of the digital filter

o A direct partial-fraction expansion of H(z) Is

—zZ—ay

22 + 0[12+ 0%)

H(z)=1+

16 . .
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Analysis of Arithmetic

Round-Off Errors
» Using the algebraic computation outlined
earlier we get
2 _oy (051 +052)(1 05) 2(0!1052 051052)0!1
y,n—

(1 0[2) +20[20[1 —(1-|—0(2)6¥1

_9 1+0[2 1
2 +052+2a2 4]

17
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Analysis of Arithmetic
Round-Off Errors

16

* |nterms of the polelocationsre—’", we

have aq =—-2rcosf and oy = 2

e Substituting these values in the expression

for o7, we get

2 1412 ( 1 j
7” 1—r2 \1+r%=2rlcos26

18 . .
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Analysis of Arithmetic
Round-Off Errors

 |If the poles are close to the unit circle, i.e.,

r =1-¢ wheree iIsavery small positive

number, we can express 072 n &S

0_2 - 1 (1—8)( 1 j
"N 9gn2o\ ¢ N\1-2¢

e Thus, asthe poles get closer to the unit
circle, € > 0, the total output noise power
Increases rapidly

1
9 Copyright © S. K. Mitra
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Dynamic Range Scaling

o Inadigita filter implemented using fixed-
point arithmetic, overflow may occur at
certain internal nodes such as inputs to
multipliers and/or the adder outputs

e Occurrence of overflows may lead to large
amplitude oscillations at the filter output
causing unsatisfactory operations

Copyright © S. K. Mitra
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Dynamic Range Scaling

* Probability of overflow can be minimized
significantly by properly scaling the internal
signal levelswith the aid of scaling
multipliers

* In many cases, most of these multipliers can
be absorbed with existing multipliersin the
structure, thus reducing the total number of
multipliers needed to implement the scaled
filter

Copyright © S. K. Mitra
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Dynamic Range Scaling

e To understand the basic concepts involved
In scaling, consider the structure given
below showing explicitly the r-th node
variableu,[n] that needsto be scaled

e [n]

NG
- »% v,[n]
() ° Qm(f

] — — y[n]

u,[n]
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Dynamic Range Scaling

o All fixed-point numbers are assumed to be
represented as binary fractions

 Input sequence is assumed to be bounded by
unity, i.e.,

Xn] <1, for all valuesof n
e Objective of scaling isto ensure that

u,[n] <1, foralr andfor all valuesof n

23
Copyright © S. K. Mitra



Dynamic Range Scaling

 Threedifferent conditions can be derived to
ensure that U.[N] satisfiesthe above bound

e An Absolute Bound -
e Now

[=—o0

e From the above we get

ulnl= ¥ frKIXn-kK]

'=—00

24

wlnl= 3 fIKIn-K

< YK

K=—00
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Dynamic Range Scaling
e Thusthe condition u,[n] <1issatisfied If

i\fr[k]\gj, for al r

k=—o0
e The above condition is both necessary and
sufficient to guarantee no overflow

o |f thiscondition is not satisfied in the
unscaled realization, the input signal can be
scaled with amultiplier K of value

K= Ool
mrax Zk:—oo‘ fr [k:”

25 _ _
Copyright © S. K. Mitra



Dynamic Range Scaling

* The scaling rule developed is based on a
worst case bound and does not fully utilize
the dynamic range of all adder output
registers mmmp significant reduction in SNR

o It isdifficult to compute the value of K
analytically

o Approximate value can be computed by
replacing the infinite sum with afinite sum

for astablefilter

2
6 Copyright © S. K. Mitra



Dynamic Range Scaling

 More practical and easy to use scaling rules
can be derived in the frequency domain if
some information about the input signalsis

Known apriori

* Definethe L, -norm (p=1) of aFourier
transform F(e!?) as

1/ p
F| _£2n [[F(el) d@)

27 . .
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Dynamic Range Scaling

» |F|,, the L£,-norm, is the root-mean-
squared (rms) value of F(e!?) over [-n, ]

HF 1, the L3-norm, is the mean absolute
value of F(e!?)over [-n, 7]

e limp_. F| exists for a continuous F (e!)
andlsglven )Y

Fle=

—ﬂ<w<ﬂ

ax F(el?)

28 . .
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Dynamic Range Scaling

o A morerealistic bound is derived next
assuming that the input x[n] is a deterministic
signal withaDTFT X (e!?)

« [ _-Bound
* Now from u,[n] = Zf [K]X[n—K] we get

k=—o0

U, (e”) = F (e!?) X (e!?)

where U, (e!?) and F.(e!?)arethe DTFTs
of u.[n] and f.[n], respectively

29 _ _
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Dynamic Range Scaling

e Theinverse Fourier transform of
U, (e!?) = F (e)”) X (e)?)

yields _
ulnl= 1 [F(e”)X(e?)elde
e Thus, *
1 T . .
U< [ F(e!) X(e!?)da
72-—72' _ —
1 7% j
IRt 5, | X (€00 |<IFeL Xy

30 =

Copyright © S. K. Mitra



Dynamic Range Scaling

e Thus, if |X]|, <1, the dynamic range
constraint |U,[n] <1 is satisfied if
HFrHOO <1

* Hence, If the mean absolute value of the
Input spectrum is bounded by unity, then
there will be no adder overflow If the peak
gains from the filter input to all adder
outputs are scaled to satisfy |F [, <1

e Ingenerd, thisscaling ruleisrarely used
since in practice | X|, <1 does not hold

31
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Dynamic Range Scaling
« /,-Bound
o Applying the Schwartz inequality to

o [N] =2; [F (€)X (e1”)elde

we get

Uy :n]‘z
( T T

1 o2, |1 o 2
<2 LR dWJﬂzﬂ{z X(e*) dWJ

32 _ _
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Dynamic Range Scaling

* orequivaently, |

uln< R ) - XE*)

e Thus, If the input to the filter has finite
energy bounded by unity, i.e.,| X|, <1, then
the adder overflow can be prevented by
scaling the filter such that the rms values of

all scaling transfer functions from the input
to all adder outputs are bounded by unity,

|.e., HFFHZS:L r=12,....R

Copyright © S. K. Mitra
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Dynamic Range Scaling
A General Scaling Rule -
Obtained using Holder’ sinequality Is given

Y <R X,

where P.q21 satisfying 5+ 5 =

Note: [ -bound is obtained when p =0
andq=1

and L,-bound is obtained when p = 2
andg=2

Another useful scaling rule, £ -bound is
obtained whenp=1and =

Copyright © S. K. Mitra
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Dynamic Range Scaling

» After scaling, the scaling transfer functions
become F; (z) and the scaling constants
should be chosen such that

Rl <l r=12..R

* In many structures, all scaling multipliers
can be absorbed into the existing
feedforward multipliers without any
Increase in the total number of multipliers,
and hence, noise sources

Copyright © S. K. Mitra
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Dynamic Range Scaling

* |n some cases, the scaling process may
Introduce additional multipliers in the system

o If al scaling multipliers are b-bit units, then
Rl <L r=12..R

can be satisfied with an equality sign,
providing afull utilization of the dynamic
range of each adder output and thus yielding
amaximum SNR

Copyright © S. K. Mitra
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Dynamic Range Scaling

An attractive option from a hardware point
of view I1sto make as many unabsorbed
scaling multipliers as possible in the scaled
structure take avalue that I1s a power of 2

In which case, these scaling multipliers can
be Implemented simply by a shift operation

The norm of the scaling transfer function
for these multipliers then satisfies

1 <
§<HFer£1
with aslight decrease in the SNR

Copyright © S. K. Mitra



Scaling of a Cascade Form
[IR Digital Filter Structure

e Consider the unscaled structure consisting
of R second-order |IR sectionsrealized in
direct form ||

Copyright © S. K. Mitra



Scaling of a Cascade Form
[IR Digital Filter Structure

o |tstransfer function is given by

H(2) = K_rR[Hi(z)
where =

Hi(z):@: 1+byzt+by 22

A(2) 1+ay 714 Ao 7%

39

Copyright © S. K. Mitra



Scaling of a Cascade Form
[IR Digital Filter Structure

* The branch nodes to be scaled are marked
by () which are seen to be the inputs to
the multipliers in each second-order section

e The scaling transfer functions are given by

Fr(z):Ar [TH,(2), r=12,...,R

40
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Scaling of a Cascade Form
[IR Digital Filter Structure

e The scaled version of the cascade structure

1S shown below

Copyright © S. K. Mitra



Scaling of a Cascade Form
[IR Digital Filter Structure

e The scaling process has introduced a new
multiplier by, in each second-order section

o |If the zeros of the transfer function H(z) are
on the unit circle, asis usually the case, then

by =+1

* In which case we can choose by, =b,, =27V
to reduce the total number of multipliersin
the final scaled structure

42 : -
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Scaling of a Cascade Form
[IR Digital Filter Structure

e From the scaled structure It can be seen that

- K TH
r(Z)_AY(Z)g /(2),

R
H(2)=K][[H/,(2)
/=1

where - - 4 = 5
Hg(z):bOE‘FbMZ +b2€z

1+ 3y 71+ Ay 72

43
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Scaling of a Cascade Form
[IR Digital Filter Structure

e Denote A
HFer:ar, r=212,..., R

A
H =aru
and choose the scaling constants as

K=BoK; by =B/by, £1=01,2r=12,..,R

Copyright © S. K. Mitra



Scaling of a Cascade Form
[IR Digital Filter Structure

hen

_ - ,BoK r-1
F(2) = A(Z)gﬂsz(Z)

r-1
(Hﬂ@]Fr(z)’ r=212,..., R

=0

R R
H(2) = oK S,H/(2) Z(Hﬂ%)"' (2)
=0 =0

45
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Scaling of a Cascade Form
[IR Digital Filter Structure

 After scaling we require

_ r-1 r-1
Frp{Hﬁg]Frp=ar(Hﬁg]=Lr=12 ..... R
/=0 /=0

R R
“H“p :(Hﬂfij =05R+1(Hﬁf] =1
=0 /=0

» Solving the above we get

ﬁo=0}1, Br=.", r=12...,R

46
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Dynamic Range Scaling Using
MATLAB

» Dynamic range scaling using the £,-norm

rule can be easily carried out using
MATLAB by smulating the digital filter
structure

* Denote the impulse response from the input
to the r-th branch node as{ f,[n]}

* Assume that the branch nodes have been
ordered in accordance with their precedence
relations with increasing r
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Dynamic Range Scaling Using
MATLAB

» Computefirst the Lynorm |Fy, of { f;[n]}
and scale the input by amultiplier ky =| R,

» Next, compute the L£,-norm|F,|,, of { fo[n]}
and scale the multipliers feeding into then
second adder by dividing with a constant

k2 = HFZHZ

« Continue the process until the output node
has been scaled to yield an L,-norm of unity

48 : :
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Dynamic Range Scaling Using
MATLAB

 Example - Consider the cascade realization
of Hy(2) = 0.0662272(1+z 1)

1-0.25932847 1
1+ 2 z_1+ z_2
1-0.676285821+0.39174682 2

Ho(2) =

1kl [ 0.0662272/k2 /K3

y x2 y2
a Pt Pe e e
z z
[: C+ si2(1) 2/k3
sil ¥

0.2593284  0.0662272/k2 0.6762858

-1
Z

/| si(2) N
N V13
—0.3917468

49 : -
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Dynamic Range Scaling Using
MATLAB

kl=1:k2=1;k3=1;

x1 = 1/k1;

s1=0;s52=[00];

varnew = 0; k=1

while k > 0.0001
y1l=9.2593284*g51 + X1,
x2 = (0.0662272/k2) *(y1 + sil);
sl=yl;
y2 = 0.6762858*s12(1) - 0.3917468*s512(2) + X2,
S2(2) =s12(1); si2(1) =y2;
varold = varnew;
varnew = varnew + abs(y1)* abs(y1l);
k = varnew - varold;
x1=0;

end
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Dynamic Range Scaling Using

MATLAB

e The MATLAB program simulating the
cascaded structure isgiven by Program 9 6
In text

* The program isfirst run with all scaling
constants set to unity, I.e., k1 = k2 =k3 =1

* In the statement computing the approximate
value of the L,-norm, the output variableis
chosen asyl

» The program computes the square of the L5,-
norm at node yl as 1.07210002757252

Copyright © S. K. Mitra
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Dynamic Range Scaling Using
MATLAB

k1 = sgrt(1.07210002757252); k2 =1; k3 =1,
x1 = 1/k1;
s1=0;92=[00];
varnew = 0; k=1
while k > 0.0001
y1l=9.2593284*g51 + X1,
x2 = (0.0662272/k2) *(y1 + sil);
sl=yl;
y2 = 0.6762858*s12(1) - 0.3917468*s512(2) + X2,
S2(2) =s12(1); si2(1) =y2;
varold = varnew;
varnew = varnew + abs(y1)* abs(y1l);
k = varnew - varold;
x1=0;
end

Copyright © S. K. Mitra



53

Dynamic Range Scaling Using
MATLAB

 For the next run of the program, we set k1 =

= ./1.07210002757252 with other scaling
constants still set to unity

A second run of the program showsthe L,-
norm of the impulse response at node y1 as
1.0 verifying the success of scaling the
INput

 Inthe second step, in the statement
computing the approximate value of the L, -
norm, the output variable is chosen as y2

Copyright © S. K. Mitra
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Dynamic Range Scaling Using
MATLAB

k1 = sgrt(1.07210002757252); k2 =1; k3 =1,
x1 = 1/k1;
s1=0;92=[00];
varnew = 0; k=1
while k > 0.0001
y1l=9.2593284*g51 + X1,
x2 = (0.0662272/k2) *(y1 + sil);
sl=yl;
y2 = 0.6762858*s12(1) - 0.3917468*s512(2) + X2,
S2(2) =s12(1); si2(1) =y2;
varold = varnew;
varnew = varnew + abs(y2)* abs(y2);
k = varnew - varold;
x1=0;
end
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Dynamic Range Scaling Using
MATLAB

» The program yields the square of the -
norm of the impulse response at node y2 as
0.02679820762398, which is used to set k2

= /0.02679820762398 with k3 still set to
unity
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Dynamic Range Scaling Using
MATLAB

k1 = sgrt(1.07210002757252);

k2 = sgrt(0.2679820762398); k3 = 1;

x1 = 1/k1;

s1=0;s2=[00];

varnew = 0; k=1

while k > 0.0001
y1l=9.2593284*g51 + X1,
x2 = (0.0662272/k2) *(y1 + sil);
sl=yl;
y2 = 0.6762858*si2(1) - 0.3917468*s12(2) + x2;
S2(2) =s12(1); si2(1) =y2;
varold = varnew;
varnew = varnew + abs(y3)* abs(y3);
k = varnew - varold;
x1=0;

end
Copyright © S. K. Mitra



Dynamic Range Scaling Using
MATLAB

e The processisrepeated for node y3,
resulting in k3= /11.96975400608943

» Thefinal value of the £, -norm of the
Impulse response at node y3 is 0.99999683

Y4
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Dynamic Range Scaling Using
MATLAB

k1 = sgrt(1.07210002757252);
k2 = sgrt(0.2679820762398); k3 = sgrt(11.9675400608943);
x1 = 1/k1;
s1=0;s2=[00];
vanew =0; k=1
while k > 0.0001
y1l=9.2593284*g51 + X1,
x2 = (0.0662272/k2) *(y1 + sil);
sl=yl;
y2 = 0.6762858*si2(1) - 0.3917468*s12(2) + x2;
S2(2) =s12(1); si2(1) =y2;
varold = varnew;
varnew = varnew + abs(y3)* abs(y3);
k = varnew - varold;
x1=0;

end
Copyright © S. K. Mitra
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Product Round-Off Noise
Calculation Using MATLAB

Program 9 6 can be easlly modified to
calculate the product round-off noise variance
at the output of the scaled structure

o thisend, we set the digital filter input to
zero and apply an impulse at the input of the
first adder

Thisiseguivalent to setting x1 = 1inthe
program

The normalized output noise variance due to a
single noise source 1s 1.07720966304256 7
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Product Round-Off Noise
Calculation Using MATLAB

e Next, we apply an impulse at the input of
the second adder with the digital filter input
set to zero

* Thisisachieved by replacing X2 in the
calculation of y2 with x1

* The program yields the normalized output

noise variance due to a single error source
at the second adder as 1.26109014071707

60
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Product Round-Off Noise
Calculation Using MATLAB

e Thetotal normalized output noise variance,
assuming all products to be quantized
before addition, Is

2x1.07209663042567 + 4x1.2610901407/1707 + 3
=10.18855382371962

* On thethe hand, for quantization after
addition of products, the total normalized
output noise variance Is

1.07209663042567 +1.261090140/1707 +1
=3.3318677114274

61 _ _
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Product Round-Off Noise
Calculation Using MATLAB

e Example - We interchange the locations of
the two sections in the cascade

0.0662272/k3

1kl yl 12 ¥2
& I P

s12(1)

4
/1 N
N
0.2593284  0.0662272/k3

0.6762858 ;
§i(2)

-0.3917468

62 . .
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Product Round-Off Noise
Calculation Using MATLAB

 Inthiscase, the total normalized output
noise variance, assuming all productsto be
guantized before addition, Is

3x1.5465221+ 4x0.7/693895+ 2=9.7/1/71242

* On thethe hand, for quantization after
addition of products, the total normalized
output noise variance Is

1.5465221+ 0.7693895 +1 = 3.3159116

63 Copyright © S. K. Mitra
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