Optimum Ordering and Pole-Zero
Pairing of the Cascade Form IlIR
Digital Filter

e There are many possible cascade
realizations of a higher order |IR transfer
function obtained by different pole-zero
pairings and ordering

e Each one of these realizations will have

different output noise power due to product
round-offs

e |tI1sof Interest to determine the cascade
realization with the lowest output noise
power
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Optimum Ordering and

Pole-Zero Pairing

e Consider the scaled cascade structure shown
below
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Optimum Ordering and
Pole-Zero Pairing

he scaled noise transfer functions are
given by
R

R
GK(Z) :HHi (Z) :[Hﬂi ]GK(Z), r=12,...,R
1=/ 1=/
GR+1(Z):1

where =~ R ol 5 2
- by, +by,Z "+ by,2
H,(2) = by : / ,

1+ a:w Z

R
G,(2)=][Hi(2
=

+ azgz_
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Optimum Ordering and
Pole-Zero Pairing

o Output noise power spectrum due to
product round-off is given by

2 o2
Ry () = 62 )
+ The output noise variance isthus
>_ 2 R+1 ]
02 =G} Zkg \Gg(el(*))\ do>

5 ' R+1
=0p Z kaGE‘
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Optimum Ordering and
Pole-Zero Pairing

* Note: k, Isthetotal number of multipliers
connected to the ¢-th adder

e |If products are rounded before summation
ki =Kry1=3
k=5 (=23,...,R
o If products are rounded after summation
k, =1, [(=12,...,R+1
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Optimum Ordering and
Pole-Zero Pairing

* Recall
_1 _
BO_OL]_’ BI‘ ar+1 I 1,2, ,R
e Thus,
H ﬁ HFEHp
- OCR+1_HHHp
. Substitutlng the above n
- e
Py (©) =05 )
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Optimum Ordering and
Pole-Zero Pairing

we get
2T —
o) 2 R 2 : 2
Pr(©)= % | kraHip+ > kilFi [ Gi(el”)

"2
H|5L

[ 2 R 21~ 12
Kret Hip+ > k[P iGrla.
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Optimum Ordering and
Pole-Zero Pairing

The scaling transfer function F,(z) contains
a product of section transfer functions, H; (z),
| =12,...,/ —1 whereas, the noise transfer
function G, (z) contains the product of
section transfer functions H; (z2),
1=/,/+1... R
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Optimum Ordering and
Pole-Zero Pairing

* Thusevery term in the expressionsfor P, (o)
and 65 Includes the transfer functions of

al R sections in the cascade realization

e To minimize the output noise power, the
norms of H;(z) should be minimized for
all values of | by appropriately pairing the
poles and zeros
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Optimum Ordering and

Pole-Zero Pairing
Pole-Zero Pairing Rule -

First, the complex pole-pair closest to the
unit circle should be paired with the nearest
complex zero-pair

Next, the complex pole-pair that Is closest
to the previous set of poles should be
matched with its nearest complex zero-pair

Continue this process until all poles and
zeros have been paired
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Optimum Ordering and
Pole-Zero Pairing

e The suggested pole-zero pairing islikely to
lower the peak gain of the section
characterized by the paired poles and zeros

e Lowering of the peak gain in turn reduces
the possibility of overflow and attenuates

the round-off noise

11 _ _
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Optimum Ordering and
Pole-Zero Pairing

e |llustration of pole-zero pairing
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Optimum Ordering and
Pole-Zero Pairing

« After the appropriate pole-zero pairings
have been made, the sections need to be
ordered to minimize the output round-off
noise

e A section in the front part of the cascade has
Its transfer function H; (z) appear more

frequently in the scaling transfer

expressions for Pry () and 05
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Optimum Ordering and
Pole-Zero Pairing

e On the other hand, a section near the output
end of the cascade has its transfer function
H; (z) appear more frequently in the noise
transfer function expressions

» The best locations for H; (z) obviously
depends on the type of norms being applied
to the scaling and noise transfer functions

14 _ _
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Optimum Ordering and
Pole-Zero Pairing

o A careful exammatlon of the expressions
for B, (») and Gy revealsthat Iif the
L5 scallng IS used, then ordering of paired
sections does not affect too much the output
noise power since all normsin the
expressionsare L,-norms

e Thisfact isevident from the results of the
two examples presented earlier
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Optimum Ordering and
Pole-Zero Pairing

e If L _-scalingisbeing employed, the
sections with the poles closest to the unit
circle exhibit a peaking magnitude response
and should be placed closer to the output
end

e Theordering rule in this case isto place the
least peaked section to the most peaked
section starting at the input end
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Optimum Ordering and
Pole-Zero Pairing

* The ordering is exactly opposite if the
objective Isto minimize the peak noise
and an L,-scaling is used

* Ordering has no effect on the peak noise if
L -scaling is used

« The M-filezp2sos can be used to
determine the optimum pole-zero pairing

and ordering according the above discussed
17 rule
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Signal-to-Noise Ratio in
Low-Order IIR Filters

* The output round-off noise variances of
unscaled digital filters do not provide a
realistic picture of the performances of
these structures in practice

e Thisisdueto the fact that introduction of
scaling multipliers can increase the number
of error sources and the gain for the noise
transfer functions

18 _ _
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Signal-to-Noise Ratio in
Low-Order IIR Filters

 Thereforethe digital filter structure should
first be scaled before its round-off noise
performance is analyzed

 In many applications, the round-off noise
variance by itself is not sufficient, and a
more meaningful result is obtained by
computing instead the signal-to-noise ratio
(SNR) for performance evaluation

19 _ _
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Signal-to-Noise Ratio in
Low-Order IIR Filters

* The computation of the SNR for the first-
and second-order |IR structures are
considered here

e Most conclusions derived from the detailed
analysis of these ssmple structures are also
valid for more complex structures

* Methods followed here can be easlly
extended to the general case

20 _ _
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Signal-to-Noise Ratio in
Low-Order IIR Filters

e Consder the causal unscaled first-order
filter shown below

X[n]ﬁ ! >y[n] +y[n]
]
| g

e |tsoutput round-off noise variance was

computed earlier and is given by

2
2 Op

O. =
Y 1—OL2

21 _ _
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Signal-to-Noise Ratio in
Low-Order IIR Filters

o Assume the input X[ n] to be a WSS random

signal with auniform probability density

function and a variance 0)2(

e Thevariance csf, of the output signal y[n]
generated by thisinput is then

2 2l vp2ren | 2f 1
ofy —Gx(nzoh [n]j_gx(l—ocz)

Copyright © 2001, S. K. Mitra
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Signal-to-Noise Ratio in
Low-Order lIR Filters
e The SN\R of the unscaled filter i1s then

2 2

@)
NR = y Oy
R= 2 2

Gy, Og

- mmm) S\Risindependent of o

 However, thisisnot avalid result since the
adder 1slikely to overflow in an unscaled
structure

23 _ _
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Signal-to-Noise Ratio in
Low-Order IIR Filters

e The scaled structure is shown below along
with its round-off error analysis model
assuming quantization after addition of all
products

en]

W 4KT &yl + 0]

Z_l

(04

24 _ _
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Signal-to-Noise Ratio in
Low-Order IIR Filters

o With the scaling multiplier present, the
output signal power becomes

> K%}
1-a
e The signal-to-noiseratio isthen
_ K%}

5

INR

25 _ _
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Signal-to-Noise Ratio in
Low-Order IIR Filters

« Since the scaling multiplier coefficient K
depends on the pole location and the type of
scaling being followed, the SNR will thus
reflect this dependence

* The scaling transfer function is given by

F@=H@=
l-az
with a corresponding iImpulse response
f[n] =Z"{F(2)} = a"u[n]

Copyright © 2001, S. K. Mitra
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Signal-to-Noise Ratio in
Low-Order IIR Filters

* To guarantee no overflow, we choose
1

> ol NI
e To evaluate the SNR we need to know the
type of input x[n] being applied
o If x[n] isuniformly distributed with X{n] <1
Its variance is given by

2 1
zeé

K =

27 _ _
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Signal-to-Noise Ratio in
Low-Order IIR Filters

 The SNRIsthen given
(1-

oy

a|)2

INR =

366
e For a(b+1)-bit signed fraction with round-
off or two’ s—compl ement truncation
ce=2"?/12
e The SNRIndB isgiven by
NRyg = 20l0g19(1—| o [) + 6.02 + 6.02b

28
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Signal-to-Noise Ratio in
First-Order lIR Filters

SNR of first-order IIR filters for different
Inputs with no overflow scaling

Typical SNR, dB

Input type R (=12, 0 = 0.95)
uniform density (1;2)2 52,24
oy o315 | T e
fSri Qquusgrll ((::I;/known (123%) 2 69,91

29
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Signal-to-Noise Ratio in
Second-Order IIR Filters

e Consder the causal unscaled second-order
IR filter given below

X[n] —@ ? > y[n]

— O

<1
_B|

30
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Signal-to-Noise Ratio in
Second-Order IIR Filters

o |tsscaled version along with the round-off
noise analysis model, assuming quantization
after addition of all products, is shown
below

. en]
gy +yln]
T
G

_B|

Copyright © 2001, S. K. Mitra



Signal-to-Noise Ratio in
Second-Order IIR Filters

e For aWSS input with a uniform probability
density function and a variance 4, the
signal power at the output Is given by

69 = G%(KZ thz[n]j
n=0
e Theround-off noise power at the output Is

given by
G% = 0(2)( Oghz[n]j
n=0

32 _ _
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Signal-to-Noise Ratio in
Second-Order IIR Filters

e Thus, the signal-to-noise ratio of the scaled

structure is given by
2 2 2
@)
=)=
Oy 9y
e The scaling transfer function F(z) i1s given
by 1
F(2=H(@)=;
l+az "+Pz

—2

33 _ _
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Signal-to-Noise Ratio in
Second-Order IIR Filters

e |f thepolesof H(z) areat z= ret 19, then

1

1— 2r cosO z_1 +r 22_2

» Corresponding impulse response is given by
r"sin(n+2)6
sino

F(z2)=H(2) =

t[n]=h[n]= -u[n]

34
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Signal-to-Noise Ratio in
Second-Order IIR Filters

* The overflow iscompletely eliminated If
1

2n=ol h[N] |
o > > olh[n]]isdifficult to compute
analytically
* Itispossibleto establish some bounds on

the summation to provide areasonable
estimate of the value of K

K =

35 _ _
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Signal-to-Noise Ratio in
Second-Order IIR Filters

* The magnitude response of the unscaled
second-order section to a sinusoidal input
IS given by

7 -11/2
1

C@-r)*(1-2rcosb+r?).
e But,|H (e19)|cannot be greater than >",\_o| h[N] |
as the latter I1s the largest possible value of

the output y[n] for an input x[n] with |} n]|<1
36

H () =
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Signal-to-Noise Ratio in
Second-Order IIR Filters

e Moreover,
z|h[n]|—i S M sin(n+1)0]
n=0 SIN6 n=0
< 1 T L

snbn-o (1-r)sin®
A tighter upper bound on\, ol h[n] |is
given by

A
22 olhn][<

n(1-r?)sin®

37
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Signal-to-Noise Ratio in
Second-Order IIR Filters

e Therefore

2 2\2 i 2
(25T (1-r°)=sin“o
16

e Bounds on the SNR for the all-pole second-
order section can also be derived for various
types of Inputs

(1-1)%(1—2r cosf+r?) >

38 _ _
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Signal-to-Noise Ratio in
Second-Order IIR Filters

* Asinthe case of the first-order section, as
the poles move closer to the unit circle
r -1, the gain of the filter increases

e Theinput signal then needs to be scaled
down to avoid overflow while boosting the
output round-off noise

e Thistype of interplay between the round-off
noise and dynamic range IS a characteristic
of all fixed-point digital filters

39
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Bounded Real Transfer Function

e Bounded Real Transfer Function -

o A causal stablereal coefficient transfer
function H(2) is defined to be abounded
real (BR) function if it satisfiesthe
following condition:

H(el®) <1, forallvaluesof o

40 _ _
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Bounded Real Transfer Function

 |f theinput and the output to the digital
filter are x[n] and y[n], respectively with
X (el®) and Y (e!®)denoting their DTFTS,
then the equivalent condition for the BR
property Is given 02y
Y(el®)” <X (el?)

 Integrating the above from —7 tom,

dividing by 2r, and applying Parseval’s

relationweget & X
9 S yn< S

a1 N=—o0 N=—o0
Copyright © 2001, S. K. Mitra
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Bounded Real Transfer Function

e Thus, adiqgital filter characterized by a BR
transfer function is passive as, for all finite-
energy Inputs,

Output energy < Input energy

o If |

H(el®) =1 forallvaluesof ®

then it isalossless system

A causal stable transfer function H(z) with
IH (e!®)|=1 iscalled alossless bounded

real (LBR) transfer function

42 _ _
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Requirements for

Low Coefficient Sensitivity

e A causal stable digital filter with atransfer
function H(z) has low coefficient sensitivity
In the passband If It satisfies the following
conditions.

(1) H(2) i1s abounded-real transfer function

(2T
whic
Q)T

nere exists a set of frequencies wy at
1 |H (e!9%)|=1
ne transfer function of the filter with

guantized coefficients remains bounded real

Copyright © 2001, S. K. Mitra



Requirements for

Low Coefficient Sensitivity
e Since|H (e!®)|is bounded above by unity, the
frequencies ok must be in the passband
(e

1
0.8
0.6
04
0.2

0 ®

0 02T 04 06 08 1
Wk
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Requirements for
Low Coefficient Sensitivity

Any causal stable transfer function can be
scaled to satisfy the first two conditions

Let the digital filter structure N realizing
the BR transfer function H(z) be
characterized by R multipliers with
coefficients m

et the nominal values of these multiplier
coefficients assuming infinite precision
realization bem,

Copyright © 2001, S. K. Mitra
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Requirements for
Low Coefficient Sensitivity

Because of the third condition, regardless of
the actual values of m inthe immediate
nelghborhood of their design values myg,
the actual transfer function remains BR

Consider [H (e!®k)|which for multiplier
values mq isequal to 1
The third condition implies that if the

coefficient m s quantized, then [H (e/“¥)]
can only become lessthan 1

Copyright © 2001, S. K. Mitra



Requirements for
Low Coefficient Sensitivity

» A plot of |H (e!®)|will thus appear as
Indicated below

o)

47 _ _
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Requirements for
Low Coefficient Sensitivity

e Thusthe plot of |H (ej“’k)lwill have a zero-
valued slopeat m =mg

°* |.€

IHE

om
mM=My -
- mmm) The first-order sensitivity of |H (el?)]
with respect to each multiplier coefficient
is zero at all frequenciesmy, where |H (e'?)|
assumes its maximum value of unity

48 _ _
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Requirements for
Low Coefficient Sensitivity

« Since all frequencies oy , where the
magnitude function is exactly equal to
unity, are in the passband of the filter and if
these frequencies are closely spaced, it Is
expected that the sensitivity of the
magnitude function to be very small at other
frequencies in the passband
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Requirements for
Low Coefficient Sensitivity

o A digital filter structure satisfying the
conditions for low coefficient sensitivity Is
called astructurally bounded system

» Since the output energy of such a structure
IS also less than or equal to the input energy
for al finite energy input signals, it isalso
called astructurally passive system

o0 _ _
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Requirements for
Low Coefficient Sensitivity

o If |H(el®)|=1, thetransfer function H(2) is
called alossless bounded real (LBR)
function, 1.e., astable allpass function

 An allpassrealization satisfying the LBR
condition is called astructurally lossless or
LBR system implying that the structure
remains allpass under coefficient
guantization

ol _ _
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Low Passbhand Sensitivity
[IR Digital Filter

o Let G(2) be an N-th order causal BR IIR
transfer function given by

G(2) - P(2) pp+pzt+-+pnz
D(z) 1+dyzt+---+dyz N

with a power-complementary transfer
function H(2) given by

Q(2) _Go+qz T +--+agyz "
H(2) = - -1 ~N
D(z) 1+diz"+---+dyz

Copyright © 2001, S. K. Mitra
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Low Passbhand Sensitivity
[IR Digital Filter
* Power-complementary property implies that
G(el®) P +]H(el?) P=1
e Thus, H(2) iIsalso a BR transfer function

e \We determine the conditions under which
G(2) and H(2) can be expressed in the form

G(2) = L{ A(2) + A(2)}
H(2) = 3{ A (2) - A(2)

where Ay(2) and A (z) are stable allpass

- functions
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Low Passband Sensitivity
[IR Digital Filter

. G(2=HA2+A(2)} mm)

G(2) must have a symmetric numerator, I.€.,
Pn = PN-n

+ H(2)=3{A2)-A(2)} =)

* H(2z) must have an anti-symmetric

numerator, I.e.,
Onh = —UN-n
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Low Passband Sensitivity
[IR Digital Filter

o Symmetric property of the numerator of
G(2) implies
P(zH) =zNP(2)

o Likewise, antisymmetric property of the
numerator of H(z) implies

Q(z 1) =-2"Q(2)
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Low Passbhand Sensitivity
[IR Digital Filter

e By analytic continuation, the power-
complementary condition can be rewritten

as
G(zH)G(2)+H(zHH(2) =1

e Substituting o2 o)

Z Z

G H@=pg
In the above we get

P(2)P(z Y+ Q(2)Q(z 1) = D(z 1)D(2)

56
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Low Passbhand Sensitivity
[IR Digital Filter

e Using therelations P(z_l) =N P(z) and
Q(z_l) = —zNQ(z) IN the previous equation
we get

z N[P(2)P(2) - Q(2)Q(2)] = D(z )D(2)
e Or, equivalently

P%(2)-Q%(2) =[P(2) + Q(2)][P(2) - Q(2)]
- 2ND(2)D(z

Y
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Low Passbhand Sensitivity
[IR Digital Filter

e Using the relations P(z) = z N P(z_l) and

Q(2) = N Q(z_l) we can write

P(2)-Q(2) =z M[P(z ) +Q(z )]

o Letz=¢),1<k <N, denote the zeros of
[P(2) + Q(2)]

nen z:i,lsks N, are the zeros of

| k
P(2) -Q(2)]
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Low Passband Sensitivity
[IR Digital Filter
) [P(z) - Q(2)] isthe mirror image of
the polynomial [P(2) + Q(2)]
From P(2)-Q(2) =z N[P(z ) +Q(z )]

It follows that the zeros of [P(2) + Q(2)]
Inside the unit circle are also zeros of D(2),

and the zeros of [P(2) + Q(2)] outside the
unit circle are zeros of D(z™%), since G(2)
and H(z) are assumed to be stable functions
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Low Passbhand Sensitivity
[IR Digital Filter

e Let z=§,,1<k<r, bether zeros of
[P(2) + Q(2)] inside the unit circle, and the
remaining N —r zeros, z=¢&y, r+1<k <N,
be outside the unit circle

 Thenthe N zeros of D(z) are given by
Ek,  1<k<r

Z=1 1 i1<k<N
Ek

60 _ _
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Low Passband Sensitivity
[IR Digital Filter

e To identify the above zeros of D(z) with the
appropriate allpass transfer functions Ay (2)
and A (z) we observe that these allpass
functions can be expressed as

Ao(2) = G(2) + H(2) = P(zg)J(rzC)Q(Z)

A(2)=G(2)-H(2) = P(Zg)zzc)?(z)

Copyright © 2001, S. K. Mitra
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Low Passband Sensitivity
[IR Digital Filter

o Therefore, the two allpass transfer functions
can be expressed as

Copyright © 2001, S. K. Mitra



Low Passbhand Sensitivity
[IR Digital Filter

* |n order to arrive at the above expressions,
It IS necessary to determine the transfer
function H(2) that I1s power-complementary
to G(2)

e Let U(2) denote the 2N-th degree
polynomial

U(2)=P2%(2)-zND(z1)D(2) = ZZN u,z "
n=0

63 _ _
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Low Passbhand Sensitivity
[IR Digital Filter

e Then

Q%(2) = Z unZ o

« Solving the above equatl on for the
coefficients q, of Q(z) we get

OIo=@

Oazz—qo
Ok = ON-k =

U — 5 40On_¢ k> 2
200

64
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Low Passband Sensitivity
[IR Digital Filter

o After Q(2) has been determined, we form
the polynomial [P(2) + Q(2)], find its zeros
2 =&y, and then determine the two allpass
functions Ay(2) and A(2)

* |t can be shown that IIR digital transfer
functions derived from analog Butterworth,
Chebyshev and €lliptic filters viathe
bilinear transformation can be decomposed
Into the sum of allpass functions
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Low Passbhand Sensitivity
[IR Digital Filter

* For lowpass-highpass filter pairs, the order
N of the transfer function must be odd with

the orders of Ay(z) and A(z) differing by 1
 For bandpass-bandstop filter pairs, the order
N of the transfer function must be even with
the orders of Ay(z) and A (2) differing by 2

66 _ _
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Low Passbhand Sensitivity
[IR Digital Filter

* A simple approach to identify the poles of
the two allpass functions for odd-order
digital Butterworth, Chebyshev, and eliptic
lowpass or highpass transfer functionsis as
follows

e Letz=A,0<k <N -1 denote the poles of
G(z) or H(2)
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Low Passbhand Sensitivity

[IR Digital Filter

» Let 6, denotethe angle of the pole Ak

o Assume that the poles are numbered such
that B <01

* Thenthepolesof Ay(z) aregiven by Aoy
and the poles of A(z) are given by Aok 41

68 _ _
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Low Passband Sensitivity
[IR Digital Filter

* The pole interlacing property isillustrated
below Im 7

— Rez

69 _ _
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Low Passband Sensitivity
[IR Digital Filter

 Example - Consider the parallel allpass
realization of a 5-th order €liptic lowpass
filter with the specifications. @y = 0.4,
0} p= OSdB, and Og = 40 dB

* Thetransfer function obtained using

MATLAB isgiven by

0.528+0.0797z 1+ 0.12957~ 2
_+0.12952" 3400797z~ 4+05282°

(1-0.491771)(1-0.7624z71+0.539772)
x(1-0.557z1+0.8828772)

G(2)

/70 _ _
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Low Passbhand Sensitivity
[IR Digital Filter

 |tsparalld allpass decomposition isgiven

by
G(2) - 1 (0491-27)(08828-05572 1 + 7°%)
2 (1-0.491zH(1-0.557z1 + 0. 88282_2)
0.539—0.7627°1 + 772

_|_
1-0.762z 1 + 0.5392—2]

71 _ _
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Low Passband Sensitivity
[IR Digital Filter

o A 5-multiplier realization using asigned 7-
bit fractional sign-magnitude representation

of each multiplier coefficient Is shown
below

A[n] —
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Low Passband Sensitivity
[IR Digital Filter

e The gain response of the filter with infinite
precision multiplier coefficients and that
with quantized coefficients are shown

below ideal - solid line, quantized - dashed line
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Low Passband Sensitivity
[IR Digital Filter

» Passband details of the parallel allpass
realization and a direct form realization

Parallel Allpass Direct Form
Realization Realization
ideal - solid line, quantized - dashed line ideal - solid line, quantized - dashed line
0.1 ; ; ‘ ; ; |
i m‘OS /‘? \\ ‘fL\ ””” N
I -Cs__ ﬁhw/i /:\
| S gl
| S AW
| e VA |
| 5 i
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0.5
o/t olt
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