
Creating and Concatenating Matrices

1-3

Creating and Concatenating Matrices

MATLAB is a matrix-based computing environment. All of the data that you

enter into MATLAB is stored in the form of a matrix or a multidimensional

array. Even a single numeric value like 100 is stored as a matrix (in this case,

a matrix having dimensions 1-by-1):

A = 100;

whos A

 Name Size Bytes Class

 A 1x1 8 double array

Regardless of the data type being used, whether it is numeric, character, or

logical true or false data, MATLAB stores this data in matrix (or array) form.

For example, the string 'Hello World' is a 1-by-11 matrix of individual

character elements in MATLAB. You can also build matrices composed of more

complex data types, such as MATLAB structures and cell arrays.

To create a matrix of basic data elements such as numbers or characters, see

• “Constructing a Simple Matrix” on page 1-4

• “Specialized Matrix Functions” on page 1-4

To build a matrix composed of other matrices, see

• “Concatenating Matrices” on page 1-7

• “Matrix Concatenation Functions” on page 1-8

This section also describes

• “Generating a Numeric Sequence” on page 1-10

• “Combining Unlike Data Types” on page 1-11

1 Data Structures

1-4

Constructing a Simple Matrix
The simplest way to create a matrix in MATLAB is to use the matrix

constructor operator, []. Create a row in the matrix by entering elements

(shown as E below) within the brackets. Separate each element with a comma

or space:

row = [E1, E2, ..., Em] row = [E1 E2 ... Em]

For example, to create a one row matrix of five elements, type

A = [12 62 93 -8 22];

To start a new row, terminate the current row with a semicolon:

A = [row1; row2; ...; rown]

This example constructs a 3 row, 5 column (or 3-by-5) matrix of numbers. Note

that all rows must have the same number of elements:

A = [12 62 93 -8 22; 16 2 87 43 91; -4 17 -72 95 6]

A =

 12 62 93 -8 22

 16 2 87 43 91

 -4 17 -72 95 6

The square brackets operator constructs two-dimensional matrices only,

(including 0-by-0, 1-by-1, and 1-by-n matrices). To construct arrays of more

than two dimensions, see “Creating Multidimensional Arrays” on page 1-39.

For instructions on how to read or overwrite any matrix element, see

“Accessing Elements of a Matrix” on page 1-14.

Specialized Matrix Functions
MATLAB has a number of functions that create different kinds of matrices.

Some create specialized matrices like the Hankel or Vandermonde matrix. The

functions shown in the table below create a matrices for more general use.

Function Description

ones Create a matrix or array of all ones.

zeros Create a matrix or array of all zeros.

Creating and Concatenating Matrices

1-5

Most of these functions return matrices of type double (double-precision

floating point). However, you can easily build basic arrays of any numeric type

using the ones, zeros, and eye functions.

To do this, specify the MATLAB class name as the last argument:

A = zeros(4, 6, 'uint32')

A =

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

Examples
Here are some examples of how you can use these functions.

Creating a Magic Square Matrix. A magic square is a matrix in which the sum of

the elements in each column, or each row, or each main diagonal is the same.

To create a 5-by-5 magic square matrix, use the magic function as shown.

eye Create a matrix with ones on the diagonal and zeros

elsewhere.

accumarray Distribute elements of an input matrix to specified locations

in an output matrix, also allowing for accumulation.

diag Create a diagonal matrix from a vector.

magic Create a square matrix with rows, columns, and diagonals

that add up to the same number.

rand Create a matrix or array of uniformly distributed random

numbers.

randn Create a matrix or array of normally distributed random

numbers and arrays.

randperm Create a vector (1-by-n matrix) containing a random

permutation of the specified integers.

Function Description

1 Data Structures

1-6

A = magic(5)

A =

 17 24 1 8 15

 23 5 7 14 16

 4 6 13 20 22

 10 12 19 21 3

 11 18 25 2 9

Note that the elements of each row, each column, and each main diagonal add

up to the same value: 65.

Creating a Random Matrix. The rand function creates a matrix or array with

elements uniformly distributed between zero and one. This example multiplies

each element by 20:

A = rand(5) * 20

A =

 3.8686 13.9580 9.9310 13.2046 14.5423

 13.6445 7.5675 17.9954 6.8394 6.1858

 6.0553 17.2002 16.4326 5.7945 16.7699

 10.8335 17.0731 12.8982 6.8239 11.3614

 3.0175 11.8713 16.3595 10.6816 7.4083

Creating a Diagonal Matrix. Use diag to create a diagonal matrix from a vector.

You can place the vector along the main diagonal of the matrix, or on a diagonal

that is above or below the main one, as shown here. The -1 input places the

vector one row below the main diagonal:

A = [12 62 93 -8 22];

B = diag(A, -1)

B =

 0 0 0 0 0 0

 12 0 0 0 0 0

 0 62 0 0 0 0

 0 0 93 0 0 0

 0 0 0 -8 0 0

 0 0 0 0 22 0

Creating and Concatenating Matrices

1-7

Concatenating Matrices
Matrix concatenation is the process of joining one or more matrices to make a

new matrix. The brackets [] operator discussed earlier in this section serves

not only as a matrix constructor, but also as the MATLAB concatenation

operator. The expression C = [A B] horizontally concatenates matrices A and

B. The expression C = [A; B] vertically concatenates them.

This example constructs a new matrix C by concatenating matrices A and B in

a vertical direction:

A = ones(2, 5) * 6; % 2-by-5 matrix of 6 s

B = rand(3, 5); % 3-by-5 matrix of random values

C = [A; B] % Vertically concatenate A and B

C =

 6.0000 6.0000 6.0000 6.0000 6.0000

 6.0000 6.0000 6.0000 6.0000 6.0000

 0.6154 0.7382 0.9355 0.8936 0.8132

 0.7919 0.1763 0.9169 0.0579 0.0099

 0.9218 0.4057 0.4103 0.3529 0.1389

Keeping Matrices Rectangular
You can construct matrices, or even multidimensional arrays, using

concatenation as long as the resulting matrix does not have an irregular shape

(as in the second illustration shown below). If you are building a matrix

horizontally, then each component matrix must have the same number of rows.

When building vertically, each component must have the same number of

columns.

This diagram shows two matrices of the same height (i.e., same number of

rows) being combined horizontally to form a new matrix.

4
3

3-by-4

4
3

3-by-63-by-2

7 23

1141

90-1

46 0 13 -4

9844 62 31

3 51 -9 25

7 23 46 0 13 -4

41 11 44 9862 31

-1 90 3 51 -9 25

1 Data Structures

1-8

The next diagram illustrates an attempt to horizontally combine two matrices

of unequal height. MATLAB does not allow this.

Matrix Concatenation Functions
The following functions combine existing matrices to form a new matrix.

Examples
Here are some examples of how you can use these functions.

Concatenating Matrices and Arrays. An alternative to using the [] operator for

concatenation are the three functions cat, horzcat, and vertcat. With these

functions, you can construct matrices (or multidimensional arrays) along a

specified dimension. Either of the following commands accomplish the same

task as the command C = [A; B] used in the section on “Concatenating

Matrices” on page 1-7:

C = cat(1, A, B); % Concatenate along the first dimension

C = vertcat(A, B); % Concatenate vertically

Function Description

cat Concatenate matrices along the specified dimension

horzcat Horizontally concatenate matrices

vertcat Vertically concatenate matrices

repmat Create a new matrix by replicating and tiling existing

matrices

blkdiag Create a block diagonal matrix from existing matrices

3

2-by-4
3-by-2

7 23

41 11

-1 90

46 0 13 -4

44 62 31 98

7 23 46 0 13 -4

41 44 62 31 98

-1 90

11

Creating and Concatenating Matrices

1-9

Replicating a Matrix. Use the repmat function to create a matrix composed of

copies of an existing matrix. When you enter

repmat(M, v, h)

MATLAB replicates input matrix M v times vertically and h times horizontally.

For example, to replicate existing matrix A into a new matrix B, use

A = [8 1 6; 3 5 7; 4 9 2]

A =

 8 1 6

 3 5 7

 4 9 2

B = repmat(A, 2, 4)

B =

 8 1 6 8 1 6 8 1 6 8 1 6

 3 5 7 3 5 7 3 5 7 3 5 7

 4 9 2 4 9 2 4 9 2 4 9 2

 8 1 6 8 1 6 8 1 6 8 1 6

 3 5 7 3 5 7 3 5 7 3 5 7

 4 9 2 4 9 2 4 9 2 4 9 2

Creating a Block Diagonal Matrix. The blkdiag function combines matrices in a

diagonal direction, creating what is called a block diagonal matrix. All other

elements of the newly created matrix are set to zero:

A = magic(3);

B = [-5 -6 -9; -4 -4 -2];

C = eye(2) * 8;

D = blkdiag(A, B, C)

D =

 8 1 6 0 0 0 0 0

 3 5 7 0 0 0 0 0

 4 9 2 0 0 0 0 0

 0 0 0 -5 -6 -9 0 0

 0 0 0 -4 -4 -2 0 0

 0 0 0 0 0 0 8 0

 0 0 0 0 0 0 0 8

1 Data Structures

1-10

Generating a Numeric Sequence
Because numeric sequences can often be useful in constructing and indexing

into matrices and arrays, MATLAB provides a special operator to assist in

creating them.

This section covers

• “The Colon Operator”

• “Using the Colon Operator with a Step Value”

The Colon Operator
The colon operator (first:last) generates a 1-by-n matrix (or vector) of

sequential numbers from the first value to the last. The default sequence is

made up of incremental values, each 1 greater than the previous one:

A = 10:15

A =

 10 11 12 13 14 15

The numeric sequence does not have to be made up of positive integers. It can

include negative numbers and fractional numbers as well:

A = -2.5:2.5

A =

 -2.5000 -1.5000 -0.5000 0.5000 1.5000 2.5000

By default, MATLAB always increments by exactly 1 when creating the

sequence, even if the ending value is not an integral distance from the start:

A = 1:6.3

A =

 1 2 3 4 5 6

Also, the default series generated by the colon operator always increments

rather than decrementing. The operation shown in this example attempts to

increment from 9 to 1 and thus MATLAB returns an empty matrix:

A = 9:1

A =

 Empty matrix: 1-by-0

The next section explains how to generate a nondefault numeric series.

Creating and Concatenating Matrices

1-11

Using the Colon Operator with a Step Value
To generate a series that does not use the default of incrementing by 1, specify

an additional value with the colon operator (first:step:last). In between the

starting and ending value is a step value that tells MATLAB how much to

increment (or decrement, if step is negative) between each number it

generates.

To generate a series of numbers from 10 to 50, incrementing by 5, use

A = 10:5:50

A =

 10 15 20 25 30 35 40 45 50

You can increment by noninteger values. This example increments by 0.2:

A = 3:0.2:3.8

A =

 3.0000 3.2000 3.4000 3.6000 3.8000

To create a sequence with a decrementing interval, specify a negative step

value:

A = 9:-1:1

A =

 9 8 7 6 5 4 3 2 1

Combining Unlike Data Types
Matrices and arrays can be composed of elements of most any MATLAB data

type as long as all elements in the matrix are of the same type. If you do include

elements of unlike data types when constructing a matrix, MATLAB converts

some elements so that all elements of the resulting matrix are of the same type.

(See “Data Types” on page 2-1 for information on any of the MATLAB data

types discussed here.)

1 Data Structures

1-12

Data type conversion is done with respect to a preset precedence of data types.

The following table shows the five data types you can concatenate with an

unlike type without generating an error.

For example, concatenating a double and single matrix always yields a

matrix of type single. MATLAB converts the double element to single to

accomplish this.

Empty Matrices
If you construct a matrix using empty matrix elements, the empty matrices are

ignored in the resulting matrix:

A = [5.36; 7.01; []; 9.44]

A =

 5.3600

 7.0100

 9.4400

Examples
Here are some examples of data type conversion during matrix construction.

Combining Single and Double Types. Combining single values with double values

yields a single matrix. Note that 5.73*10^300 is too big to be stored as a

single, thus the conversion from double to single sets it to infinity. (The

class function used in this example returns the data type for the input value):

x = [single(4.5) single(-2.8) pi 5.73*10^300]

x =

 4.5000 -2.8000 3.1416 Inf

TYPE character integer single double logical

character character character character character invalid

integer character integer integer integer integer

single character integer single single single

double character integer single double double

logical invalid integer single double logical

Creating and Concatenating Matrices

1-13

class(x) % Display the data type of x

ans =

 single

Combining Integer and Double Types. Combining integer values with double values

yields an integer matrix. Note that the fractional part of pi is rounded to the

nearest integer. (The int8 function used in this example converts its numeric

argument to an 8-bit integer):

x = [int8(21) int8(-22) int8(23) pi 45/6]

x =

 21 -22 23 3 7

class(x)

ans =

 int8

Combining Character and Double Types. Combining character values with double

values yields a character matrix. MATLAB converts the double elements in

this example to their character equivalents:

x = ['A' 'B' 'C' 68 69 70]

x =

 ABCDEF

class(x)

ans =

 char

Combining Logical and Double Types. Combining logical values with double

values yields a double matrix. MATLAB converts the logical true and false

elements in this example to double:

x = [true false false pi sqrt(7)]

x =

 1.0000 0 0 3.1416 2.6458

class(x)

ans =

 double

1 Data Structures

1-14

Accessing Elements of a Matrix

This section explains how to use subscripting and indexing to access and assign

values to the elements of a MATLAB matrix. It covers the following:

• “Accessing Single Elements” on page 1-14

• “Linear Indexing” on page 1-15

• “Functions That Control Indexing Style” on page 1-16

• “Accessing Multiple Elements” on page 1-16

• “Logical Indexing” on page 1-18

Accessing Single Elements
To reference a particular element in a matrix, specify its row and column

number using the following syntax, where A is the matrix variable. Always

specify the row first and column second:

A(row, column)

For example, for a 4-by-4 magic square A,

A = magic(4)

A =

 16 2 3 13

 5 11 10 8

 9 7 6 12

 4 14 15 1

you would access the element at row 4, column 2 with

A(4, 2)

ans =

 14

For arrays with more than two dimensions, specify additional indices following

the row and column indices. See the section on “Multidimensional Arrays” on

page 1-37.

Accessing Elements of a Matrix

1-15

Linear Indexing
With MATLAB, you can refer to the elements of a matrix with a single

subscript, A(k). MATLAB stores matrices and arrays not in the shape that

they appear when displayed in the MATLAB Command Window, but as a

single column of elements. This single column is composed of all of the columns

from the matrix, each appended to the last.

So, matrix A

A = [2 6 9; 4 2 8; 3 0 1]

A =

 2 6 9

 4 2 8

 3 5 1

is actually stored in memory as the sequence

2, 4, 3, 6, 2, 5, 9, 8, 1

The element at row 3, column 2 of matrix A (value = 5) can also be identified as

element 6 in the actual storage sequence. To access this element, you have a

choice of using the standard A(3,2) syntax, or you can use A(6), which is

referred to as linear indexing.

If you supply more subscripts, MATLAB calculates an index into the storage

column based on the dimensions you assigned to the array. For example,

assume a two-dimensional array like A has size [d1 d2], where d1 is the

number of rows in the array and d2 is the number of columns. If you supply two

subscripts (i, j) representing row-column indices, the offset is

(j-1) * d1 + i

Given the expression A(3,2), MATLAB calculates the offset into A’s storage

column as (2-1) * 3 + 3, or 6. Counting down six elements in the column

accesses the value 5.

1 Data Structures

1-16

Functions That Control Indexing Style
If you have row-column subscripts but want to use linear indexing instead, you

can convert to the latter using the sub2ind function. In the 3-by-3 matrix A

used in the previous section, sub2ind changes a standard row-column index of

(3, 2) to a linear index of 6:

A = [2 6 9; 4 2 8; 3 0 1];

linearindex = sub2ind(size(A), 3, 2)

linearindex =

 6

To get the row-column equivalent of a linear index, use the ind2sub function:

[row col] = ind2sub(size(A), 6)

row =

 3

col =

 2

Accessing Multiple Elements
For the 4-by-4 matrix A shown below, it is possible to compute the sum of the

elements in the fourth column of A by typing

A = magic(4);

A(1,4) + A(2,4) + A(3,4) + A(4,4)

You can reduce the size of this expression using the colon operator. Subscript

expressions involving colons refer to portions of a matrix. The expression

A(1:m, n)

refers to the elements in rows 1 through m of column n of matrix A. Using this

notation, you can compute the sum of the fourth column of A more succinctly:

sum(A(1:4, 4))

Accessing Elements of a Matrix

1-17

Nonconsecutive Elements
To refer to nonconsecutive elements in a matrix, use the colon operator with a

step value. The m:3:n in this expression means to make the assignment to

every third element in the matrix. Note that this example uses linear indexing:

B = A;

B(1:3:16) = -10

B =

 -10 2 3 -10

 5 11 -10 8

 9 -10 6 12

 -10 14 15 -10

The end Keyword
MATLAB provides a keyword called end that designates the last element in the

dimension in which it appears. This keyword can be useful in instances where

your program doesn’t know how many rows or columns there are in a matrix.

You can replace the expression in the previous example with

B(1:3:end) = -10

Note The keyword end has two meanings in MATLAB. It can be used as

explained above, or to terminate a certain block of code (e.g., if and for

blocks).

Specifying All Elements of a Row or Column
The colon by itself refers to all the elements in a row or column of a matrix.

Using the following syntax, you can compute the sum of all elements in the

second column of a 4-by-4 magic square A:

sum(A(:, 2))

ans =

 34

1 Data Structures

1-18

By using the colon with linear indexing, you can refer to all elements in the

entire matrix. This example displays all the elements of matrix A, returning

them in a column-wise order:

A(:)

ans =

 16

 5

 9

 4

 .

 .

 .

 12

 1

Using a Matrix As an Index
You can repeatedly access an array element using the ones function. To create

a new 2-by-6 matrix out of the ninth element of a 4-by-4 magic square A,

B = A(9 * ones(2, 6))

B =

 3 3 3 3 3 3

 3 3 3 3 3 3

Logical Indexing
A logical matrix provides a different type of array indexing in MATLAB. While

most indices are numeric, indicating a certain row or column number, logical

indices are positional. That is, it is the position of each 1 in the logical matrix

that determines which array element is being referred to.

See “Using Logicals in Array Indexing” on page 2-22 for more information on

this subject.

Getting Information About a Matrix

1-19

Getting Information About a Matrix

This section explains how to get the following information about an existing

matrix:

• “Dimensions of the Matrix” on page 1-19

• “Data Types Used in the Matrix” on page 1-20

• “Data Structures Used in the Matrix” on page 1-21

Dimensions of the Matrix
These functions return information about the shape and size of a matrix.

The following examples show some simple ways to use these functions. Both

use the 3-by-5 matrix A shown here:

A = rand(5) * 10;

A(4:5, :) = []

A =

 9.5013 7.6210 6.1543 4.0571 0.5789

 2.3114 4.5647 7.9194 9.3547 3.5287

 6.0684 0.1850 9.2181 9.1690 8.1317

Example Using numel
Using the numel function, find the average of all values in matrix A:

sum(A(:))/numel(A)

ans =

 5.8909

Function Description

length Return the length of the longest dimension. (The length of a

matrix or array with any zero dimension is zero.)

ndims Return the number of dimensions.

numel Return the number of elements.

size Return the length of each dimension.

1 Data Structures

1-20

Example Using ndims, numel, and size
Using ndims and size, go through the matrix and find those values that are

between 5 and 7, inclusive:

if ndims(A) ~= 2

 return

end

[rows cols] = size(A);

for m = 1:rows

 for n = 1:cols

 x = A(m, n);

 if x >= 5 && x <= 7

 disp(sprintf('A(%d, %d) = %5.2f', m, n, A(m,n)))

 end

 end

end

The code returns the following:

A(1, 3) = 6.15

A(3, 1) = 6.07

Data Types Used in the Matrix
These functions test elements of a matrix for a specific data type.

Function Description

isa Detect if input is of a given data type.

iscell Determine if input is a cell array.

iscellstr Determine if input is a cell array of strings.

ischar Determine if input is a character array.

isfloat Determine if input is a floating-point array.

isinteger Determine if input is an integer array.

islogical Determine if input is a logical array.

Getting Information About a Matrix

1-21

Example Using isnumeric and isreal
Pick out the real numeric elements from this vector:

A = [5+7i 8/7 4.23 39j pi 9-2i];

for m = 1:numel(A)

 if isnumeric(A(m)) && isreal(A(m))

 disp(A(m))

 end

end

The values returned are

 1.1429

 4.2300

 3.1416

Data Structures Used in the Matrix
These functions test elements of a matrix for a specific data structure.

isnumeric Determine if input is a numeric array.

isreal Determine if input is an array of real numbers.

isstruct Determine if input is a MATLAB structure array.

Function Description

isempty Determine if input has any dimension with size zero.

isscalar Determine if input is a 1-by-1 matrix.

issparse Determine if input is a sparse matrix.

isvector Determine if input is a 1-by-n or n-by-1 matrix.

Function Description

1 Data Structures

1-22

Resizing and Reshaping Matrices

You can easily enlarge or shrink the size of a matrix, modify its shape, or rotate

it about various axes. This section covers

• “Expanding the Size of a Matrix” on page 1-22

• “Diminishing the Size of a Matrix” on page 1-23

• “Reshaping a Matrix” on page 1-24

Expanding the Size of a Matrix
Attempting to access an element outside of the matrix generates an error:

A = magic(4);

B = A(4, 7)

Index exceeds matrix dimensions

However, if you store a value in an element outside of the matrix, the size of

the matrix increases to accommodate the new element.

A(4, 7) = 17

A =

 16 2 3 13 0 0 0

 5 11 10 8 0 0 0

 9 7 6 12 0 0 0

 4 14 15 1 0 0 17

Similarly, you can expand a matrix by assigning to a series of matrix elements.

This example expands a 4-by-4 matrix to new dimensions, 5-by-7:

A(2:5, 5:7) = 5

A =

 16 2 3 13 0 0 0

 5 11 10 8 5 5 5

 9 7 6 12 5 5 5

 4 14 15 1 5 5 5

 0 0 0 0 5 5 5

Resizing and Reshaping Matrices

1-23

Diminishing the Size of a Matrix
You can delete rows and columns from a matrix by assigning the empty array

[] to those rows or columns. Start with

A = magic(4)

A =

 16 2 3 13

 5 11 10 8

 9 7 6 12

 4 14 15 1

Then, delete the second column of A using

A(:, 2) = []

This changes matrix A to

A =

 16 3 13

 5 10 8

 9 6 12

 4 15 1

If you delete a single element from a matrix, the result isn’t a matrix anymore.

So expressions like

A(1,2) = []

result in an error. However, you can use linear indexing to delete a single

element, or a sequence of elements. This reshapes the remaining elements into

a row vector:

A(2:2:10) = []

results in

A =

 16 9 3 6 13 12 1

1 Data Structures

1-24

Reshaping a Matrix
The following functions change the shape of a matrix.

Examples
Here are a few examples to illustrate some of the ways you can reshape

matrices.

Reshaping a Matrix. Reshape 3-by-4 matrix A to have dimensions 2-by-6:

A = [1 4 7 10; 2 5 8 11; 3 6 9 12]

A =

 1 4 7 10

 2 5 8 11

 3 6 9 12

B = reshape(A, 2, 6)

B =

 1 3 5 7 9 11

 2 4 6 8 10 12

Function Description

reshape Modify the shape of a matrix.

rot90 Rotate the matrix by 90 degrees.

fliplr Flip the matrix about a vertical axis.

flipud Flip the matrix about a horizontal axis.

flipdim Flip the matrix along the specified direction.

transpose Flip a matrix about its main diagonal, turning row vectors

into column vectors and vice versa.

ctranspose Transpose a matrix and replace each element with its

complex conjugate.

Resizing and Reshaping Matrices

1-25

Transposing a Matrix. Transpose A so that the row elements become columns. You

can use either the transpose function or the transpose operator (.') to do this:

B = A.'

B =

 1 2 3

 4 5 6

 7 8 9

 10 11 12

There is a separate function called ctranspose that performs a complex

conjugate transpose of a matrix. The equivalent operator for ctranpose on a

matrix A is A':

A = [1+9i 2-8i 3+7i; 4-6i 5+5i 6-4i]

A =

 1.0000 + 9.0000i 2.0000 -8.0000i 3.0000 + 7.0000i

 4.0000 -6.0000i 5.0000 + 5.0000i 6.0000 -4.0000i

B = A'

B =

 1.0000 -9.0000i 4.0000 + 6.0000i

 2.0000 + 8.0000i 5.0000 -5.0000i

 3.0000 -7.0000i 6.0000 + 4.0000i

Rotating a Matrix. Rotate the matrix by 90 degrees:

B = rot90(A)

B =

 10 11 12

 7 8 9

 4 5 6

 1 2 3

Flipping a Matrix. Flip A in a left-to-right direction:

B = fliplr(A)

B =

 10 7 4 1

 11 8 5 2

 12 9 6 3

1 Data Structures

1-26

Shifting and Sorting Matrices

You can sort matrices, multidimensional arrays, and cell arrays of strings

along any dimension and in ascending or descending order of the elements. The

sort functions also return an optional array of indices showing the order in

which elements were rearranged during the sorting operation.

This section covers

• “Shift and Sort Functions” on page 1-26

• “Shifting the Location of Matrix Elements” on page 1-26

• “Sorting the Data in Each Column” on page 1-28

• “Sorting the Data in Each Row” on page 1-28

• “Sorting Row Vectors” on page 1-29

Shift and Sort Functions
Use these functions to shift or sort the elements of a matrix.

Shifting the Location of Matrix Elements
The circshift function shifts the elements of a matrix in a circular manner

along one or more dimensions. Rows or columns that are shifted out of the

matrix circulate back into the opposite end. For example, shifting a 4-by-7

matrix one place to the left moves the elements in columns 2 through 7 to

columns 1 through 6, and moves column 1 to column 7.

Function Description

circshift Circularly shift matrix contents.

sort Sort array elements in ascending or descending order.

sortrows Sort rows in ascending order.

issorted Determine if matrix elements are in sorted order.

Shifting and Sorting Matrices

1-27

Create a 5-by-8 matrix named A and shift it to the right along the second

(horizontal) dimension by three places. (You would use [0, -3] to shift to the

left by three places):

A = [1:8; 11:18; 21:28; 31:38; 41:48]

A =

 1 2 3 4 5 6 7 8

 11 12 13 14 15 16 17 18

 21 22 23 24 25 26 27 28

 31 32 33 34 35 36 37 38

 41 42 43 44 45 46 47 48

B = circshift(A, [0, 3])

B =

 6 7 8 1 2 3 4 5

 16 17 18 11 12 13 14 15

 26 27 28 21 22 23 24 25

 36 37 38 31 32 33 34 35

 46 47 48 41 42 43 44 45

Now take A and shift it along both dimensions: three columns to the right and

two rows up:

A = [1:8; 11:18; 21:28; 31:38; 41:48];

B = circshift(A, [-2, 3])

B =

 26 27 28 21 22 23 24 25

 36 37 38 31 32 33 34 35

 46 47 48 41 42 43 44 45

 6 7 8 1 2 3 4 5

 16 17 18 11 12 13 14 15

Since circshift circulates shifted rows and columns around to the other end

of a matrix, shifting by the exact size of A returns all rows and columns to their

original location:

B = circshift(A, size(A));

all(B(:) == A(:)) % Do all elements of B equal A?

ans =

 1 % Yes

1 Data Structures

1-28

Sorting the Data in Each Column
The sort function sorts matrix elements along a specified dimension. The

syntax for the function is

sort(matrix, dimension)

To sort the columns of a matrix, specify 1 as the dimension argument. To sort

along rows, specify dimension as 2.

This example first constructs a 3-by-5 matrix:

A = rand(3,5) * 10

A =

 9.5013 7.6210 6.1543 4.0571 0.5789

 2.3114 4.5647 7.9194 9.3547 3.5287

 6.0684 0.1850 9.2181 9.1690 8.1317

Sort each column of A in ascending order:

c = sort(A, 1)

c =

 2.3114 0.1850 6.1543 4.0571 0.5789

 6.0684 4.5647 7.9194 9.1690 3.5287

 9.5013 7.6210 9.2181 9.3547 8.1317

issorted(c(:, 1))

ans =

 1

Sorting the Data in Each Row
Sort each row of A in descending order. Note that issorted tests for an

ascending sequence. You can flip the vector to test for a sorted descending

sequence:

r = sort(A, 2, 'descend')

r =

 9.5013 7.6210 6.1543 4.0571 0.5789

 9.3547 7.9194 4.5647 3.5287 2.3114

 9.2181 9.1690 8.1317 6.0684 0.1850

Shifting and Sorting Matrices

1-29

issorted(fliplr(r(1, :)))

ans =

 1

When you specify a second output, sort returns the indices of the original

matrix A positioned in the order they appear in the output matrix. In the

following example, the second row of index contains the sequence 4 3 2 5 1,

which means that the sorted elements in output matrix r were taken from

A(2,4), A(2,3), A(2,2), A(2,5), and A(2,1):

[r index] = sort(A, 2, 'descend');

index

index =

 1 2 3 4 5

 4 3 2 5 1

 3 4 5 1 2

Sorting Row Vectors
The sortrows function keeps the elements of each row in their original order

but sorts the entire row vectors according to the order of the elements in the

first column:

rowsort = sortrows(A)

rowsort =

 2.3114 4.5647 7.9194 9.3547 3.5287

 6.0684 0.1850 9.2181 9.1690 8.1317

 9.5013 7.6210 6.1543 4.0571 0.5789

To run the sort based on a different column, include a second input argument

that indicates which column to use. This example sorts the row vectors so that

the elements in the third column are in ascending order:

rowsort = sortrows(A, 3)

rowsort =

 9.5013 7.6210 6.1543 4.0571 0.5789

 2.3114 4.5647 7.9194 9.3547 3.5287

 6.0684 0.1850 9.2181 9.1690 8.1317

issorted(rowsort(:, 3))

ans =

 1

1 Data Structures

1-30

Operating on Diagonal Matrices

There are several MATLAB functions that work specifically on diagonal

matrices.

Constructing a Matrix from a Diagonal Vector
The diag function has two operations that it can perform. You can use it to

generate a diagonal matrix:

A = diag([12:4:32])

A =

 12 0 0 0 0 0

 0 16 0 0 0 0

 0 0 20 0 0 0

 0 0 0 24 0 0

 0 0 0 0 28 0

 0 0 0 0 0 32

You can also use the diag function to scan an existing matrix and return the

values found along one of the diagonals:

A = magic(5)

A =

 17 24 1 8 15

 23 5 7 14 16

 4 6 13 20 22

 10 12 19 21 3

 11 18 25 2 9

Function Description

blkdiag Construct a block diagonal matrix from input arguments.

diag Return a diagonal matrix or the diagonals of a matrix.

trace Compute the sum of the elements on the main diagonal.

tril Return the lower triangular part of a matrix.

triu Return the upper triangular part of a matrix.

Operating on Diagonal Matrices

1-31

diag(A, 2) % Return contents of second diagonal of A

ans =

 1

 14

 22

Returning a Triangular Portion of a Matrix
The tril and triu functions return a triangular portion of a matrix, the former

returning the piece from the lower left and the latter from the upper right. By

default, the main diagonal of the matrix divides these two segments. You can

use an alternate diagonal by specifying an offset from the main diagonal as a

second input argument:

A = magic(6);

B = tril(A, -1)

B =

 0 0 0 0 0 0

 3 0 0 0 0 0

 31 9 0 0 0 0

 8 28 33 0 0 0

 30 5 34 12 0 0

 4 36 29 13 18 0

Concatenating Matrices Diagonally
You can diagonally concatenate matrices to form a composite matrix using the

blkdiag function. See “Creating a Block Diagonal Matrix” on page 1-9 for more

information on how this works.

1 Data Structures

1-32

Empty Matrices, Scalars, and Vectors

Although matrices are two dimensional, they do not always appear to have a

rectangular shape. A 1-by-8 matrix, for example, has two dimensions yet is

linear. These matrices are described in the following sections:

• “The Empty Matrix” on page 1-32

An empty matrix has one of more dimensions that are equal to zero. A

two-dimensional matrix with both dimensions equal to zero appears in

MATLAB as []. The expression A = [] assigns a 0-by-0 empty matrix to A.

• “Scalars” on page 1-33

A scalar is 1-by-1 and appears in MATLAB as a single real or complex

number (e.g., 7, 583.62, -3.51, 5.46097e-14, 83+4i).

• “Vectors” on page 1-34

A vector is 1-by-n or n-by-1, and appears in MATLAB as a row or column of

real or complex numbers:

 Column Vector Row Vector

 53.2 53.2 87.39 4-12i 43.9

 87.39

 4-12i

 43.9

The Empty Matrix
A matrix having at least one dimension equal to zero is called an empty matrix.

The simplest empty matrix is 0-by-0 in size. Examples of more complex

matrices are those of dimension 0-by-5 or 10-by-0.

To create a 0-by-0 matrix, use the square bracket operators with no value

specified:

A = [];

whos A

 Name Size Bytes Class

 A 0x0 0 double array

Empty Matrices, Scalars, and Vectors

1-33

You can create empty matrices (and arrays) of other sizes using the zeros,

ones, rand, or eye functions. To create a 0-by-5 matrix, for example, use

A = zeros(0,5)

Operating on an Empty Matrix
The basic model for empty matrices is that any operation that is defined for

m-by-n matrices, and that produces a result whose dimension is some function

of m and n, should still be allowed when m or n is zero. The size of the result of

this operation is consistent with the size of the result generated when working

with nonempty values, but instead is evaluated at zero.

For example, horizontal concatenation

C = [A B]

requires that A and B have the same number of rows. So if A is m-by-n and B is

m-by-p, then C is m-by-(n+p). This is still true if m or n or p is zero.

As with all matrices in MATLAB, you must follow the rules concerning

compatible dimensions. In the following example, an attempt to add a 1-by-3

matrix to a 0-by-3 empty matrix results in an error:

[1 2 3] + ones(0,3)

??? Error using ==> +

Matrix dimensions must agree.

Scalars
Any individual real or complex number is represented in MATLAB as a 1-by-1

matrix called a scalar value:

A = 5;

ndims(A) % Check number of dimensions in A

ans =

 2

size(A) % Check value of row and column dimensions

ans =

 1 1

1 Data Structures

1-34

Use the isscalar function to tell if a variable holds a scalar value:

isscalar(A)

ans =

 1

Vectors
Matrices with one dimension equal to one and the other greater than one are

called vectors. Here is an example of a numeric vector:

A = [5.73 2-4i 9/7 25e3 .046 sqrt(32) 8j];

size(A) % Check value of row and column dimensions

ans =

 1 7

You can construct a vector out of other vectors, as long as the critical

dimensions agree. All components of a row vector must be scalars or other row

vectors. Similarly, all components of a column vector must be scalars or other

column vectors:

A = [29 43 77 9 21];

B = [0 46 11];

C = [A 5 ones(1,3) B]

C =

 29 43 77 9 21 5 1 1 1 0 46 11

Concatenating an empty matrix to a vector has no effect on the resulting

vector. The empty matrix is ignored in this case:

A = [5.36; 7.01; []; 9.44]

A =

 5.3600

 7.0100

 9.4400

Use the isvector function to tell if a variable holds a vector:

isvector(A)

ans =

 1

