

Teaching mode: online

Cartesian Coordinates

• The cartesian coordinates of a point M are (x,y,z) The vector \overrightarrow{OM} wish relie between the origin point and point M is writen as:

$$\overrightarrow{OM} = \overrightarrow{Xi} + \overrightarrow{Yj} + \overrightarrow{Zk}$$

- **X**: is the axis of the point M.
- Y: is the ordonate of the point M.
- **Z**: is the height of the point M.

• Position vector:

$$\overrightarrow{OM} = \overrightarrow{xi} + \overrightarrow{yj} + \overrightarrow{zk}$$

• Velocity vector:

$$\vec{v} = \frac{d\vec{OM}}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$$
$$\vec{v} = \dot{x}\vec{i} + \dot{y}\vec{j} + \dot{z}\vec{k}$$

• Acceleration vector :

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{dv_x}{dt}\vec{i} + \frac{dv_y}{dt}\vec{j} + \frac{dv_z}{dt}\vec{k}$$

$$= \frac{\vec{d}^2 \vec{OM}}{dt} = \frac{d^2 \vec{x}}{dt^2}\vec{i} + \frac{d^2 \vec{y}}{dt^2}\vec{j} + \frac{d^2 \vec{z}}{dt^2}\vec{k}$$

$$\vec{a} = \ddot{\vec{x}}\vec{i} + \ddot{\vec{y}}\vec{j} + \ddot{\vec{z}}\vec{k}$$

Polar Coordinates

$$0 \le r < +\infty$$
$$0 \le \theta < 2\pi$$

$$\|\overrightarrow{u_r}\| = \|\overrightarrow{u_\theta}\| = 1$$

 $r \cos \theta$

Convert Polar to Cartesian:

$$\binom{r}{\theta} \to \binom{x}{y} : \begin{cases} x = r.\cos\theta \\ y = r.\sin\theta \end{cases}$$

$$\binom{x}{y} \to \binom{r}{\theta} : \begin{cases} r = \sqrt{x^2 + y^2} \\ \operatorname{tg}(\theta) = \frac{x}{y} \end{cases}$$

• In polar system the coordinates of a point M are (r, θ) r: is the distance between the origin and the point M θ : is the angle between the axis(x) and the vector OM

• We define the polar basis by the orthonormal basis $(\vec{u}_r, \vec{u}_\theta)$ such as:

 $*\overrightarrow{u_r}$ et $\overrightarrow{u_\theta}$: unit vectors of the system

 $\overrightarrow{u_r}$ Unit vector following the direction of the position vector \overrightarrow{OM}

 $\overrightarrow{u_{\theta}}$: Unit vector perpendicular to $\overrightarrow{u_r}$ by rotating $\pi/2$ of the vector \overrightarrow{OM}

In the Cartesian frame:

$$\overrightarrow{OM} = \overrightarrow{xi} + \overrightarrow{yj} = r\cos\theta \cdot \overrightarrow{i} + r\sin\theta \cdot \overrightarrow{j} = r(\cos\theta \cdot \overrightarrow{i} + \sin\theta \cdot \overrightarrow{j})$$

where
$$\vec{u}_r = (\cos \theta . \vec{i} + \sin \theta . \vec{j})$$

Position vector: According to polar coordinates, \overrightarrow{OM} is written as follows

$$\overrightarrow{OM}(t) = |\overrightarrow{OM}|.\overrightarrow{u_r}$$

$$\overrightarrow{r} = r.\overrightarrow{u_r}$$

 \vec{u}_r : The unit vector is mounted on the position vector.

$$\vec{\mathbf{u}}_{\mathbf{r}} = \frac{\overrightarrow{OM}}{|\overrightarrow{OM}|} = \frac{\vec{r}}{\mathbf{r}}$$

RQ: θ and r depend on time: r = f(t) And $\theta = g(t)$

• The polar base is written in terms of the Cartesian base as follows:

•
$$\begin{cases} \overrightarrow{u_r} = \cos\theta \ \overrightarrow{i} + \sin\theta \ \overrightarrow{j} \\ \overrightarrow{u_{\theta}} = -\sin\theta \ \overrightarrow{i} + \cos\theta \ \overrightarrow{j} \end{cases}$$

$$\begin{cases}
\frac{d\overrightarrow{u_r}}{dt} = -\dot{\theta} \sin\theta \, \vec{i} + \dot{\theta} \cos\theta \, \vec{j} = \dot{\theta}^{\overrightarrow{u_\theta}} \\
\frac{d\overrightarrow{u_\theta}}{dt} = -\dot{\theta} \cos\theta \, \vec{i} - \dot{\theta} \sin\theta \, \vec{j} = -\dot{\theta}^{\overrightarrow{u_r}}
\end{cases}$$

Velocity vector

$$\vec{v}(t) = \frac{d\vec{r}(t)}{dt} = \frac{d}{dt}(r.\vec{u_r}) = \frac{dr}{dt}\vec{u_r} + r\frac{d\vec{u_r}}{dt}$$

$$\vec{v}(t) = \frac{dr}{dt}\vec{u_r} + r\frac{d\theta}{dt}\vec{u_\theta} = \dot{r}\vec{u_r} + r\dot{\theta}\vec{u_\theta}$$

$$\vec{\boldsymbol{v}}(\boldsymbol{t}) = \vec{\boldsymbol{v}}_r(t) + \vec{\boldsymbol{v}}_{\boldsymbol{\theta}}(t)$$

Speed has two components

$$v_r(t) = \frac{dr}{dt} = \dot{r} \rightarrow radial \quad (m/s)$$

$$v_{\theta}(t) = r \frac{d\theta}{dt} = r\dot{\theta} \rightarrow transversal \ (m/s)$$

Magnitude

$$|\vec{v}| = \sqrt{v_r^2 + v_{\theta}^2}$$
 with $\vec{v} \begin{cases} v_r = \dot{r} \\ v_{\theta} = r\dot{\theta} \end{cases}$

Acceleration vector

•
$$\vec{a}(t) = \frac{d\vec{v}(t)}{dt} = \frac{d}{dt} (\dot{r} \overrightarrow{u_r} + r\dot{\theta} \overrightarrow{u_{\theta}}) = \frac{d^2r}{dt^2} \overrightarrow{u_r} + \dot{r} \frac{d\overrightarrow{u_r}}{dt} + \frac{dr}{dt} \dot{\theta} \overrightarrow{u_{\theta}} + r \frac{d^2\theta}{dt^2} \overrightarrow{u_{\theta}} + r \dot{\theta} \frac{d\overrightarrow{u_{\theta}}}{dt}$$

•
$$\vec{a}(t) = \frac{d\vec{v}(t)}{dt} = \left(\frac{d^2r}{dt^2} - r(\frac{d\theta}{dt})^2\right) \vec{u_r} + \left(2\frac{dr}{dt} \cdot \frac{d\theta}{dt} + r\frac{d^2\theta}{dt^2}\right) \vec{u_\theta}$$

= $(\ddot{r} - r\dot{\theta}^2) \vec{u_r} + (2\dot{r}\dot{\theta} + r\ddot{\theta}) \vec{u_\theta}$

$$\vec{a}(t) = \vec{a}_r(t) + \vec{a}_\theta(t)$$

$$a_r(t) = \left(\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2\right) = \ddot{r} - r\dot{\theta}^2 \rightarrow$$
radial component (m/s^2)

$$a_{\theta}(t) = \left(2\frac{dr}{dt} \cdot \frac{d\theta}{dt} + r\frac{d^{2}\theta}{dt^{2}}\right) = 2\dot{r}\dot{\theta} + r\ddot{\theta} \rightarrow$$

$$orthogonal component \quad (m/s^{2})$$

Magnitude

$$|\vec{a}| = \sqrt{a_r^2 + a_{\theta}^2}$$
 with \vec{a}
$$\begin{cases} a_r = \ddot{r} - r\dot{\theta}^2 \\ a_{\theta} = 2\dot{r}\dot{\theta} + r\ddot{\theta} \end{cases}$$

Circular Motion

- In a circular motion, r is constant (r=R)
- So the angular velocity vector has those components

•
$$V = \begin{cases} v_r = \dot{r} = 0 \\ v_{\theta} = R\dot{\theta} = Rw \end{cases}$$

And the angular acceleration vector has those components

• a =
$$\begin{cases} a_N = R\dot{\theta}^2 = -Rw^2 & normal\ acceleration \\ a_{T=}R\ddot{\theta} & tengencial\ acceleration \end{cases}$$

Frenet frame (Intrinsic coordinates)

In the case of planar motion, we can define at each point M on the trajectory the Frenet frame. For this purpose, at every point M, we define a vector $\overrightarrow{\mathbf{u}_t}$ tangent to the trajectory and oriented in the direction of motion, and we define the $\overrightarrow{\mathbf{u}_n}$ perpendicular to $\overrightarrow{\mathbf{u}_t}$ and oriented towards the concavity of the trajectory.

$$\vec{v} = v \, \overrightarrow{U_t} = \frac{dS}{dt} \overrightarrow{U_t}$$

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{dv}{dt} \overrightarrow{U_t} + v \frac{d\overrightarrow{U_t}}{dt}$$

$$\vec{a} = \frac{dv}{dt} \overrightarrow{U_t} + v \dot{\theta} \overrightarrow{U_n}$$

$$\dot{\theta} = \frac{d\theta}{dt} = \frac{dS}{dt} \frac{1}{R} = \frac{v}{R}$$

$$\vec{a} = \frac{dv}{dt} \overrightarrow{U_t} + \frac{v^2}{R} \overrightarrow{U_n} = \overrightarrow{a_t} + \overrightarrow{a_n}$$

$$\overrightarrow{a_t} = \frac{dv}{dt} \overrightarrow{U_t} \; ; \; \overrightarrow{a_n} = \frac{v^2}{R} \overrightarrow{U_n}$$

• The acceleration vector can be decomposed into a tangential component, called the *tangential acceleration*.

$$\overrightarrow{a_t} = \frac{dv}{dt} \overrightarrow{U_t}$$

• and a normal component called the *normal acceleration*.

$$\overrightarrow{a_n} = \frac{v^2}{R} \overrightarrow{U_n}$$

•
$$\vec{a} = a_T \vec{u}_T + a_N \vec{u}_N$$

$$a^2 = a_T^2 + a_N^2$$

• We can observe that the magnitude of the normal acceleration component is always positive, indicating that the normal acceleration is always directed towards the concavity of the trajectory.

• If $|\vec{v}| = cst$ so $\vec{a_t}$ tangentiel equal $0 \rightarrow curvilignar$ uniform motion:

$$\vec{\mathbf{a}} = \vec{\mathbf{a}}_n = \frac{v^2}{R} \overrightarrow{\mathbf{u}_n}$$

R radius of the curved path

$$\vec{a} \times \vec{v} = \left(\frac{dv}{dt} \overrightarrow{U_t} + \frac{v^2}{R} \overrightarrow{U_n}\right) \times v \overrightarrow{U_t}$$

$$\vec{a} \times \vec{v} = \frac{v^3}{R} (\overrightarrow{U_n} \times \overrightarrow{U_t})$$

$$|\vec{a} \times \vec{v}| = \frac{v^3}{R}$$

$$R = \frac{v^3}{|\vec{a} \times \vec{v}|}$$