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ABSTRACT

The thedry of information transmission sroposed Ly
Tuller, Shannon, and Wiener (in 1948) indicated a nced for
coding »f the original ressage slgnals into sipnals sulg-
atle fHr the transmission channel in vuge., The iroblen of
e onlimum coding for the purpose of storivy the
infornation or for <transmitting it under certain trans-
mission conditions is studied in this paper. A partially
mathenatlcal desceription of possible bhinary codes is
developed. Tue unsdlved problex of finding the optimun
(shortest) cdde airectly, once the nrobabilities of the
message symbOls are known, is discussed with a geometrical
representaticn,

The interesting 1iea of takding longzer parts of the
messages and coding these, instcad of coding each message
symbol separately, is discussed briefly with some illus-
trations of the advantages tc be expected,

4 device for codlnz small groups of zessuge symbols

b

1s deseribed. The device consists of o cathadc-ray tube,

]

masX, and photo-cell, wlth ascsociated circuits =o arranged
that the electron beam of the cathode-ray *‘uhbe follows
certain edges between opague and transpercnt areas of the
mask, The amplitude-moduléted pulses fed as a signal to
this device determine which portions of the nask are

followed by the electron bean,

o]
"
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CHAPTER I
CODING

Introduction

It has been suspectel for some years that the original

Hartley Law placing a limit on the amount of information
which may be transmitted through a given bandwidth in a

*
given time was not complete.1

The development of new
forms of modulation (frequency modulation in 1935, and
pulse modulation in 1939 and during the war) has led to
much theoretlcal investigation on the subject of communi-
cation channel capacity. This original research has led
to a revision of the Hartley Law and to new theories re-
garding the efficiency of communications systems.l’Q’3
The new theories make an important point that was
not stated clearly before. This point is the definition
of development of exactly what i1s meant by "information."
There is general agreement among the various authors2’3’4
that information conveying processes are based on “cholice"
or "selection." That is, information is conveyed when &
transmitter makes selections among a group of possible

choices and a recelver is "informed" of these selections.

For example, in writing, a sequence of choices from among

*Superscripts refer to references listed in the
Bibliography.




the letters of the alphabet is made. The reader is in-
formed of these choices through the medium of the written
page and the mechanism of the eye and nerves. The process
conveys information. A simpler piece of information is a
yes or no answer to a oquestion. Using the basic idea of
choice or selection, which is derived from experience,

e and Fano4 have developed a mathematical functional

Shannon
relationship between the amount of information and the na-
ture of the possible choices. Wiener,3 by the expert ap-
plication of measure theory, arrives at the same¢ functional
form. It is the development of this mathematical relation
which has led to a clearer understanding of how much "in-
formation" a source is producing and how much information

a given communications system can transmit,

The equation relating information and independent

basic cholces 1is:
H = -2 p(1) log, p(1) (1)

where H i1s the average amount of information per choilce,

and p(1) is the/priori probability of the 1™ of the
possible choices. In the special case where there are
only two choices and the a priori probability of each is
0.5, H is equal to:

H= - 3% logzt -3 logzk = log,2 = 1.0



This amount of information, the amount conveyed by the
selection of one of two equally likely possibilitiesy, is
usually taken as the unit of information and is called
one "bit." As a matter of fact, Fano has derived Equation
(1) by starting with the definition of one unit of infor-
mation as a selection between two equally likely choicerjp
Another nroperty of this measure of information is
that .t is a maximum when all thep(i) are equal., If there

are N possible choices, all equally probable,
= &
p(1) X
and

H = - S log. & = log. N
max 12 N g2 N g2 y

This property is in accord with the intuitive judgment
that events are most "uncertain" when all the possibil-
ities are equally likely to occur. It is this property
which leads to the deduction that present communications
systems do not make the optimum use of the power, band-
width, and time expended for the transmission of the
ensemble of messages for which they are designed. For,

while it is true that most communications systems are

designed to transmit a given set of possible choices

(regardless of the frequency of occurrence of each choice),

there 1s no reason to assume that informatior. scurces

produce the choices with equal probability.




Purpose of Coding

In order to design.the communication system, 1t is
first necessary to study the nature of the messages to be
transmitted on a statistical basis. 'this allows the com-
mtation of the actual average rate of the Information
which it is desired to transmit, The capacity of the
sycstem then need be no greater than necessary for this
rate. However, in order to operate at this maximum rate,
the source feeding the channel must have the statistical
structure which maximizes the information rate in tie
channel, If the source or sources to be used do not
have this structure, it 1s necessary to introduce a trans-

ducer that will "match" the source to the channel. The

The transducer here is somewhat analogous toc a transformer

which 1is designed to transfer maximum power from a gen-

erator to a load; in the present case, the source is
matched to the channel so that maximum informaticn is
transferred,

The matching transducer is often called a "“coder"
because most generally its output is quite different from
the input in form. For example, the human telegraph
operator performs a coding of the alphabet into electrical
impulses of a different'nature. The human shorthand
writer codes spoken sounds into symbols which may be
written down more quickly than the alphabet code for the

same sounds. In this case, the recording channel, arm,




hand, pen, and paper, dqes not have enough capacity for
the élphabet code, and a code better matched to the
channel must be used. 8till a third example of coding

1s that used by the Western Union Company in transmitting
a large group of greeting and holiday messages by merely
sending a code number., It might be mentioned that even
fewer numbers, on the average, would be nceded to trans-
mit the same messages if the probabilities of the indi-
vidual messages were found and the codes then arranged

to match these probabilities to the channel,

The purpose of coding, then, is to make the trans-

mission system more efficient. As explained by Shannon,2

the coder matches the source to the channel. In gsneral,
it is not possible to achieve an exact match (so that the
channel is carrying information at its maximum possible
rate), but it is possible to approach as near to an exact
mateh as desired. The necessity and success of a coder
depend, as outlined briefly above, on two factors: first,
there must be mismatch between source and channel for any
saving at all to be possible, and second, the saving in
time, bandwidth, or power must be sufficient to warrant

the increased complexity and cost of the coding transducer.

An Example of Coding (BCM)
The general concept of coding can be illustrated with

a simple discussion of the coding characteristics of Pulse

Code Modulation (PCM). PCM has been developed for telephone



communications by the Bell Laboratories.7’8 In this
system, the amplitude of a signal voltage is sampled, and
a group of seven voltage pulsesu&s transmitted to repre-
sent each sample amplitude. The pulses transmitted are
of the "on-off" type; i.e., there are just two possible
amplitucdes for each pulse. The groups of seven on-off
pulses can be made to reprecent, therefore, exactly one-
hundred and twenty-eight (27) different amplitude levels.
Tne same length code (seven pulses) is devoted to each
sample of amplitude.

In a system nandling a restricted class of messages,
such as voice communications, it is conceivable that the
one hundred twenty-eight amplitude levels would not occur
vith equal probability and that there would be some con-
ditional probabilities between successive choices. (A
recently published partial result substantiates this.)s
If the coding were arranged so that the most probable
amplitudes viere represented by short éodes, less time
would be necessary to transmit messages on the average.

For example, suppose it is desired to transmit
messages made up of Just four amplitudes. In a straight-
forward binary system, the following on-off code pulses

would be sent:
p(i) code

— ON
Amplitude #1 0.25 N J_, ,
OFF



(continued) | p(1) code
. ON
Amplitude #2 0.25 S I
L ON
Amplitude #3 0.25 1
OFF

If the four amplitudes occurred independently and with
equal probability, the above codes would be as shcft as
possible and each would transmit two units of informatlon.
However, if the probabilities are not equal and independent,

it may be possible to devise a better code. As an example,

corisider the case for the following probabilities and

codes:
p(i) code
' ON
Amplitude #1 0.500
’ ; "
Amplitude #2 0.250
1 OFF
‘ ON
Amplitude #3 0.125 .
, T OFF
Amplitude #4 0.125 | — .
’ (V)

The amount of information being generated per selec-

tion of the original amplitudes is

- - units of information
H -";E p(1) log, p(1) = 1.75 per choice.

If the original code were used, there would be two code

digits for each choice or 0.875 units of information con-
veyed by each code digit. If a new code such as the one



shown above were used, we find the average code length

would be

Lave = ? p(i) b(4i)

where p(i) is the probability of each code, and b(i) is
the number of digits in each code. For the code given,

the average code length (Dave) would be:

Liye = in(i) b(i) = 1.75 digits/code.

Thus, in this case, we see that 1.00 unit of information
is conveyed by each code digit. The code suggested 1s
optimum, since (as has already been mentioned) the maximum
information rate is log2 N, and where the signal trans-
mitted has just two levels, as in the above codes, log2 N
Z 1.00.

The important point about the new code 1s that it is
shorter, on the average, than the old. It is possible to
transmit a given message in less time with the new code.
For example, the message and the two codes discussed above

would appear as shown below.

p(1)

Ampo #1 -1 050

Message Amp. #2 .25
Amp, #3 125
A.mp. #4 a— 0125

s 22
New code - ” | r-u-l— :ZZ




Binary Coding of Equally-Probable Choices

It has been shown by Fano4 that the measure of in-
formation Hy = ? p(1) log, p(1i) 1is equal to the average
number of equally likely binary selections required to
specify a particular selection from a group of N possible
choices. In other words, the average length of a binary
code representing a particular one of N possible cholces
would just equal HN -- 1f the coding were perfect.

The binary coding cannot be made perfect for all
cases. In fact, perfect codings are special cases. Even
in the restricted case where all the possibilities N are
equally probable and 1ndependent; it is found that binary
codes will not transmit one unit of information per code
digit. As examples, the amount of information per code

digit is calculated for the case of N = 3, 4, 9 and codes

developed in the manner suggested by Fano,

Possibilities p(1) Code
1l 1/3 1
2 1/3 01
3 1/3 00

Hy = log, N = log, 3 = 1.585
Lyve = §p(1) b(1) =  1.667

EH—— ® gve. information per code digit =

Lave . 0.951
RS

1 1/4 11

2 1/4 10

3 1/4 o1

4 1/4 00




Possibilities p(i) Code

Hy = 1032' N = log2 4 = 2,000
Lave = 2.000
ve, information per code digit =
1.000
1 1/5 11
2 1/% 10
3 1/5 01
4 1/5 001
5 1/5 000
HN = 1og2 N = 1c>g2 5 = 2,320
Lave = ; p(1) b(i) = 2.400

ave, information per code digit = .967

These results can be generalized for each of the N equally
likely. The theoretical information in a choice from N
possibilities is log2 N. The average length of the shortest
binary code can be found as follows:

Let @ = largest integer such that 2" $ N

20_:* of the N possibilities may be coded by codes of

a digits.
The remaining possibilities (N - 2@) may be given

codes identical with an equal number of the first
group and then one digit added to each code which
occurs twice to distinguish them,

Thus, 2(F - 2%) codes are ( @ +1) digits long,
while N - 2(N - 2@) are still @ digits long.

- ( a+1) 28 - 2%9) + av - 2v + 29)
ave N




a<+)

2N + QN -2
N

a+1
N

= 24a-2

This code can be shown tc have a minimum average

length by noting that the code lengths must satisfy the

N <
z —bJ(_Si"'l
1=1 @2

If any of the b(4i) are decreased, the above restriction

expression:

Awill be violated unless rne or two of the other codes are

lengthened. Since the probabilities are equal, nothing
is gained by shortening one code at the expense of the
others. (The above expression will be derived later.)

The difference between the average information
capacity of these codes, which 1s one unit of information
per code digit, and the actual information which they
represent 1is:

D=L, - Hy units of information (bits)

a+ 1
D=2+a -g-—N—-logan

For simplification, let
x=¢§-1-1032N
D= 1+x - 2

In this expression, x varies between one and zero as N

-1]1=~

increases. Note that each time x = O, @ 1increases by ons,

so that it always satisfies the original definition of



being the largest integer such that 2°

na

N.
Figure 1 is a plot of this expression. The maximum
of this expression may be found by dif.erentiation:

§Daj.2*i1n2
d x :

x, = log2 iﬁ‘i = 0.529

and

D, = 140.529 - 204529 = 0,086 units of
informatlion

This means that if the worst possible nuamber of things is
chosen to be coded, the best binary code may still require
a channel capacity 0.086 bits per code greater than the
actual information being carried by each code. If a great
many codes are sent, e great amount of information capacity
is lost over all., However, the percentage loss 1is rather
small, That is, the number of bits of information lost
per binary digit transmitted 1s small.

The maximum loss will occur for an infinite number
of N', which may be found as follows:

X, = 0.529 = @+l - log, N

log, N, = @ ¥ 0.471

N o= 2@ 5 00.471

w
= 2@ x 1.38
A partial 1ist‘of the worst choices of N is:
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a Ny N, (nearest integer)
0 1.386
1 2.77 3
2 5454 g or 6
3 11,1 11
4 22.2 22
5 44,3 44
6 88.7 89
7 177.2 177
8 355. 355
9 709. 709
10 1418, 1418

The average information capacity lost per code dlgit

is, of course:

Love - By

If the worst possible N is chosen, this 1s approximately
equal to:

,.086 lost bits
a -~ 5.337 binary code digit

For example, if N = 3, p(1) = % ’

then :
= bitgs
HN 1°82 3= 1.585 possibllity
a4+l
: - ;
_Lave 2¢a N

code

=2+1--;t-1.667 digits

[P W



et e =3 . e e Bonaiiae coaml o e e ot o mea oo e a

= e sl b R Mo Ohbe Sl =K fal -

-15-

D= Lyve ™ M |
= 1.585 - 1,667 = .082 1025 21&;

D . ,98% = lost bitg
rave 1.607 +049 code digit

If N =11, p(1) = 45

H‘N = 1032 11 = 3.460 cholice
L =2+3_1§:3.545M

ave 11 code
= = bit
D = A
D = A2st bitg
Tve " 024 0% digit

On the other hand, the best possible values for N are those

for which

x=sl+a - log2 Nb O or 1,

log, Ny = @ or@+1, and

Nb are the integral ﬁowers of 2.
The above development may be summarized as follows:
(1) The minimum length binary code for N independent,
equally likely possibilities will involve extra informa-
tion capaclity unless N is an integral power of two.
(2) The worst possible N which may be chosen are:
N =1.326 x 2% , whera @ =1, 2, 3, ....

w
(3) The extra capacity is about 4.9% in the case of

" N = 3 and decreases roughly as isi—lﬁ—- . At N = 89, the
2
extra capacity is only about 1.3%.
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Present Coding lMethods for Non-ggqual Probabilities

A much more important aspect of coding appears in
the consideration of codes for possibilities which are
not equally likely. This is important for two reasons:
one, some partial results and present judgments indicate
that equal probabilities are what cccur in practice; two,
1f the same type codes as described above are used, more
and more capacity 1s wasted as!gldgcreases from its
maximum where all the N probabilities are equal.

Two general approaches to this coding problem have

2% The first is that of Shannon in which;

heen suggested.
the possible selections are arranged in order of decreas-
ing probabilities, partial sums of the probabilitles are

formed, the sums expressed in binary notation, and enough
digits of each binary number retained to form a unique

code group. The following example illustrates this

method:
-1
Possibilities  p(1) P, 2 pii) Pg (binary notation)

=1 and code

1. 0.500  0.0000 .0

2 0.250  0,5000 .10

3 0.125 0.7500 .110

4 0.125  0.8750 .11

In the above, Ps is the sum of the p(i) up to but not
including p(s). The code for each possibility is P,
expressed in finary notation and limited to b(1i)
places where b(1) is the integer satisfying:

e

= g ey e =5 T..?."-..‘ eE:
: ‘-%*ﬁﬁ,”.~\ Tt T

>

=]

o e
R
Fendy

50
B




1
logzi)%n g b(1) <« 1 + 1032 6N

This choosing of b(1) ensures that each code will
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differ from all the rest. However, as will be shown

later. it does not ensure the shortest possible code.

The second method of coding, suggested by T. P.

Cheathamw of the communications group at the Research

Laboratory of Electronics and developed by R. M. Fano,4

proceeds as follows: the possibilities are arranged in

order of decreasinz probability, the group 1is split into
two groups of as nearly equal probabllity as possible,

the digits O and 1 are assigned to all members of each
group as the first code digit, and this process is con-

tinued until each group contains only one member., Using

the same probabilities as above:

Possibllities p(1) Code
1 0.500 o _
2 0.250 10
3 0.125 110_
4 0.125 111

The horizontal lines in the code show the
successive divisions between groups of
equal probabllity.

It will be noted that each method leads to the same

code in this example.

(This is the same example of perfect

coding used earlier.) Moreover, the tweC methods have been

shown, by Shannon and Fano respectively, to converge to

the optimum coding as the number of possibilities is




increased by using longer and longer sequences of the
original message symbols., However, they do differ
slightly, and it 1s consldered worth noting that the
second method may result in a shorter code under certain

circumstances., Consider the following example:

Shannon Fano

p(1) E:"; b(1) Code Code
- 4/9 0 2 .00 0
2/9 A/9 3 .011 10
2/9 6/9 3. 101 110
1/9 8/9 4 .1100 111

It is at once seen that the Shannon code 1s longer
than even a straightforward binary coding -- which
corresponds to the first two digits of the gziven code.
Further, the Fano code is still shorter than the simple
binary coding. In simple binary coding, the average code
length would be, of course, two digits. In the above

case, the Fano code length would be:

i p(1) b(1)

ave 1 =1

t
n

Wis i

2 1
(1) + 9(2f3)f9(3)

4:.'9&*3: -]--;Z s l% digits.

A short consideration will show that the b(i)

selected in the Shannon method is too restrictive; that
actually b{1) - 1 will suffice in many cases. For the

equally probable case discussed above, the Shannon me thod
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would make the number of code digits equal to @ ® 1 in
all cases ( @ being the integer just less than 1og2 N ).
Ho#ever, it has been shown that unique codes can be con-

structed in which 2 ¥ *1

- N codes are only @ digits
long.

Although the above discussion 1s intended to show
the slight advantage of the Fano coding method over that
used in Shannon's proof, it should not be construed as
argument that the Fano code is optimum. As a matter of
fact, the Fano coding method fails under certain condi-
tions for very logical reasons, This failure may be
proved by an example and the reason then seen more
closely.

Suppose the following probability distribution

exists:

p(i) Fano Code Better Codes
0.4 11 1 11
0.1 10 011 101
0,1 011 0101 100
0.1 010 0100 011

- 0.1 001 001 010
0.1 0001 0001 001
0.1l 0000 0000 000

The average length of the Fano code is:

The average length of the better codes 1is:

4 - 1(.2) - 3(.4) = 2,6 digits




ey BT S e g e, € - PV -
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The reason the better codes exist is that, although
the first digit of the Fano cdde separates the
possibilities into two groups of probability

exactly 0.5, this very operation forces the second

digit to separate groups of widely different prob-

abilities (part of the time). On the other hand,

the better code makes an imperfect division by the

first diéit, but better divisions at least in the

second digit. In other words, the better codes

make better subdivisions into equally probable

groups on the average.

The Problem of Finding the Shortest Code

The problem of finding the optimum (shortest) code
has, unfortunately, nct been solved. That is, there 1s
no knowa direct method with which one may operate directly
on the probabilities and be sure of obtaining the shortest
code., However, the problem may be set up so that its
nature is clear and a geometrical interpretation given.
Moreover, this analysls leads to a suggestion for a
modified coding method which seems to work,

Before trying %. find the best code, it may be ad-
vantageous to determine the possible codes. The following
analysis dne to R. M. Redheffer }eads to a geometrical
interpretation of possible codes. It will De noted that
the entire code may be specified by the number of individual

codes of each length. For example, one entire code for
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N = 4 1s;
1 1
2 01
3 001
4 000

This may be specified by the set of numbers (1, 1, 2),
which means one individual code of length one, one
individual code of length two, and two individual codes
of length three. Therefore, let the set of numbers
(nl Dy O3 eoe Dy eee np) specify an entire code, where
n, = No. of X-digit individual codes.
The problem of tinding the possible entire codes is then
the same as finding the possible sets of (ny N,y «ev Ny <o
np). Since the codes consist of binary ccde groups, the
problem is that of determining how many different binary
code groups can be formed with K binary digits -- after
the n; n, «.. Oy _ ;) have been chosen. Notice that all
the individual codes are differenp, and that none starts
with a series of binary digits exactly the same as an
entire shorter code. That 1s, none of the longer indi-
vidual codes contains ani of the shorter ones as its be-
ginning. Under these restrictions, it 1s apparent that
there may be formed 2‘ combinaticns of K binary digits
less any combinations which start with a series of dlgits
just 1like a shorter code. In other words,

K- 2

nkg 2x-n12x'1-n2¢ K

n3 2

- 30.0%_12'

'
|
|
¥
i
|
8
1
i,
!
i
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Suppose, for example, that n, ¥ n, =0, n3 = 3; what

value may n, have?

n4§24-01.23-0x22-3x2

n, & 16 -6 =10
There are 2 four-digit arrangements of the binary numbers
which will have the same first three digits as one of the
given three-digit codes. Since there are three of these
already used three-digit combinations, 3 x 2 or 6 four-
digit combinations are not allowable. A similar argument
holds for each of the subtracted terms.

It should be noted that if the equality is satisfled
in the above expression for 0, then there are no longer
codes which will not contain a shorter one. In other
words, for this condition, n . 1 S By 4 5 % ¢es = 0.
This may be called an "exhausted" code. Mathematically:
n_ = 2P - ny oP = 1. n, 2P -2 _ n, .1 2

P
The above expressions may be expressed more compactly

by rearrangement:

). 4

321 2

P n

3 -1 = 1 (for an exhausted code)
31 23

This form leads to the following geometrical interpreta-
tion. The second summation may be thought of as the

scalar product of two vectors in p-dimensional space.
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N=nlxl + n212+ ...npxp
—:1_ X L"
A > xl+ i-é 121'... 2p xp

where X1y Xy oo xp are unit vectors along the coordinate

axes of the p-dimenslonal space.
- - n
Ne+«A = %E =1
L 3
IN(l Al cos Opp = 1

=
INlI cos °NA TAl

~ The locus'of the ends of all N-vectors satisfying the
last expression is, of course, a p~dimensional plane
perpendicular to the A-vector at a distance of T%T from
the origin., Thus, the lattice-points (points whose
\coordinates are integers) on this plane represent possible
exhausted codes. In a like manner, lattice points in the
volume defined by this plane and the positive (all the

n's are positive) extensions of the principal planes
represent possible non-exhausted codes.

Figure 2 depicts the geometry in question for the
case of p = 3. The plane with intercepts (2, 4, 8) is

the surface with lattice-points,satisfying:
M1,
J=1 2
It 1s seen that there are six exhausted codes having p = 3
(maximum codes are three digits long). It 1s also noted
that there are lattice points in the Xy X, plane for which
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ng = 0. These are exhausted codes ~¥ two digits maximum
length. There is one code ny = 2 which is the only ex-
hausted code of one digit maximum length. Thus, the
figure for p = 3 includes as special cases all the
possible lattice-points which represent codes of one,
two, or three digits maximum length,

The question of how many sets of (nl Ny oo np) are
possible for a given N of possibilities may now be
answered, The set of (ny n, ... nh) mast sum to N to

satisfy this condition., That is, the total number of
codes equals N.

n, =N

J

IIM o)

J=1
Geometrically, this condition is represented by a p-
dimensional plane with intercepts on all the axes at N,
Now the lattice points satisfying both conditions are
those lying on the intersection of the two planes.

As an example, the plane for N = 4 is plotted on
Figure 2, and its intersection with the previously

described plane contains two lattice-points which are
labeled @ . There are therefore two codes for four
possiblilities. One has a maximum of two digits, the
other three digits.

.Returning to the problem of the optimuvin code, it is
found that the present p-dimensional picture does not

lend itself to the representation of the set of
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probabilities which it is desired to code. That is, for
this problem, it is more practical to choose an N-
dimensional space in which the set of probabilities
associated with the N possibllitles wh;ch are belng

coded may be represented by the vector;

P = plil + p2'i’.2-r ceo pn'in .
A condition which must be satisfied by any set of (p1 Py
coe pn) is that;

p(i) =1 .
i=1

All possible sets of probabilities are geometrically
represented by a plane with intercepts on all principal
axes equal to 1.

The same N-dimensional space may be used to repre-
sent the set of code lengths (b; Dy eee D oo b ), where
b, is the number of binary digits in the r* individual
code. Each individual code length must satlsfy a condition
equivalent to that derived by Redheffer in order that 1t
be possible to write a unique binary number for the code.

" This condition has been derived as;

R

=

£ 1

)

Coe)

j=1 2
and the equivalent condition in terms of the set of code

lengths 1is;

-;%-(-1-)21.

M=

1l



When the equality holds, an exhausted code has been
reached.

Expressed in this way, there is no upper limit on
the magnitude of br. However, if the whole code 1s for
a given number fN) of possibilities, there is no point

in making b_ excessively long. In other words, it 1s

, r
desirable to have an exhausted code. Thils condition on
the b(i) may be derived as follows:

Let (by by «.. b, _ 1) be code lengths already

2
chosen, Then, the number of new codes of length
br that are possible is;
bE) b(r) b(r) zb(l‘)
2 - E - - s E
2”1 22 s r-1

The number of possibilitiles remainihg to be coded
is;

N-(r~-1)
and b, must be chosen small enough so that the
number of possible new codes does not exceed the

number of things to be coded. That 1s;

r -1 .
ob(r) ["'l-'z' -g;](-)-z 115 N-(r-1)
i=1

Or, rearranging,
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The two conditions on the b(i) are then; first, the
b(1i) must be large enough to make the coding possible, and
second, the b(i) should not be larger than necessary to
result in an exhausted code. These two conditions
mathematically reduce to the same expression only if

r = N. That is,

To find the average code length, given a set of

pPObabilities (pl p2 st pn) and a code (bl b2 soe bn),
it is necessary to multiply corresponding p's and b's

and sum. Thus, thc average code length I..ave is;

L = E p(1) b(i)

ave 1 21
Geometrically, the set of p's (pl Py «e pn) is
represented by
P = Py X, + Py 22 + ees Py in ,
and the set of b's (b b, ... b,) by

B = b1 X, + b2 Xo & eeo bn X, >

and the average code length by

N
P+B = L, = 123:1 p(i) b(1) .

The restrictions discussed above are interpreted geomet-

rically to mean that the tip of P must 1ie on the plane
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intersecting all the axes at 1., The restriction

N
2 ;%'(I)’
i=1

means that the tip of B must lie on a curved surface.

i
-

This surface (a curve in two dimensions) is shown in
Figure 3 for two dimensions and in Figure 4 for three
dimensions.

The equation P « B = L. means that all the B
points on a plane perpendicular to P represent codes
which will have the same average length. That 1s,

P+ B = Lve

IRt \Bl cos OPB s Lave

The locus of all B which make 1Bl cos Opp equal a constant
(d) is the plane perpendicular to P at a distance d from
the origin.

IBl cos OPB = d

and

ipl 4 = Lave

The B points (these all lie on a particular curved surface),
which lie in a plane perpendicular to the vector P, will
have equal code lengths which are proportional to the
distance of the plane from the origin.

The'problem of finding the optimum code is now to
move the plane perpendicular to'i out from the origin

until it contains a lattice-point which is also on the

o
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surface of possible B. 1In Figure 3, representing the
two-dimensional case, the line AB 1s moved out from the
origin to the position A'B'. 1In the new position, it
contains the lattice-point (1, i).

The moving line (or plane) contzins none of the
possible'ﬁ points until it has moved out into a position
tangent to the B surface. The coordinates of this point
of tangency represent the minimum possible code lengths
if the lengths are not restricted to integer values. (If
the coordinates of the point of tangency happen to be
integers, the rare case of a perfect code has ocecurred.)
In other words, if the (bl b,y ... b ) are allowed to
change as continuous variables, the coordinates of the
point of tangency of the plane per;%vaicular toli'repre-
cent an absolute minimum length code,. it is interesting
to derive the coordinates of this point, since the result
offers a check on the above representation of the coding
precess and also in some measure serves as z gulde to a
new coding proccedure.

The problem of finding this minimum code length
allowing the (bl b2 vee bn) to vary continuously may be
" handled by ordinary minimization methods. The method of
LaGrangian multipliers gives:

N N
F(bybyemby) = T PWIDW - AT Sy a)
i=1 i=1

to be minimized. There are then N partial derlvatives
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equated to zero and the constraining equatlon,'

N
p) ';"'bhj'l’
121 °

to solve for the N values of b(i) and for A.

t7)
N N N
z;-bFi" 3 p(i)-klnz )X -%-(—ﬂ—=o
1= 1= 1z1 2

1 - Aln2 =

X = ne
(1) =
P(1) 3 77y

(1) = log, =TT

This shows the point of tangency of the moving plane

discussed above is the point with coordinates (10g,2 % ,

1
log2 - see 10g2 l--). The absolute minimum average code
P2 Pn

length , allowing non-integer values of code lengths 1s

then:

N
- 1
Liye ~ El p(1) log, F1EY)
1 =

or
Lave = HN '
dy is the known result to this problem, and the above

derivation merely enhances the validity of the equatlcns

from which it was derived. Howcver, the gcometrical

...33..

interpretation also suggests a coding me thod which may be
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somewhat better than those previously tried.

Before discussing the modified coding method, 1t 1s

interesting to note the position occupied by Shannon's

&

3]

code in the geometrical representation described. Shannon

TR
YO -

R

suggests that b(i) should be the integer that satisfies

log, % 2 p(1) < 1+ log 3’(‘;7 ~
2 "p(1) k-
This means selecting code lengths longer than the absointe gg
optimum for most of the codes. In the geometrical sense, ;%
"

consider the N-dimensiornal cube formed by the lattice- I
points immediately surrounding the point (10g2 é ’ £§
1 K

log 4 .es lOg —l—). Shannon's pcint 1s the vertex L

of the cube farthest from the origin, The loss in

ST G
T bl
S

choosing Shannon's code corresponds to the distance the
moving plane is moved from the point of tangency to the
farthest vertex. This distance is seen to be less than
VN, and if the average code length is long (it varies
as Vﬁ‘log2 N), the loss is relatively small, However,
for a small N, the loss may be a considerable percentage

of the whole code length.

4 Suggested Coding Procedure

The geometrical representation shows the point
representing the optimum code to lie in the volwmne con-
tained by the B surface and the plane perpendicular to P
through Shannon's point. This resulis in relatively few

lattice-points to consider (depending on N and on the
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g

%

ratios of the given p(i), yet the probler of determining %
the best one seems to have no exact mathematical solution. %
The geometrical picture suggests that the lattice-polints ;
adjacent to the tangent point be considered as the first %
approximation to the bést code. Shannon's point 1is, of g
course, one of these; however, any of the other adjacent %

lattice-points, if they satisfy

N
> Sm o

, i=1
will give better codes. This methed 1s simple to apply --

b RS R S T AR

all the code lengths may be chosen to satisfy;

S
log, E%'i')' - 1<b(1) ® 1log, -5%-17

up to a certain number, after which the condition

N <
pX el
121 2

cannot be satisfied unless the b(i) satisfy Shannon's

condition .

< 1
2 p@1) <« 1 + log .
logy gegy - P 2 D)

The cod'ng method above described is easy to apply o
and involves little calculation and time. Il will work, %
for example, in the example descrlbed earlier for which %
neither the Fano or Shannon methods gave the optimum code. 3

The diagram below shows the steps in constructing the

code according to the new methed.,
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p(1) log, B%H

.4 1.32 H
1 3.32
.1 3.32 r |
.1 3432 i
ol 3.32 i f
.1 3.32 |
A 3.32

The dotted line shows the absolute optimum code lengths,
The solid line shows the attempt to choose the integer
just smaller than this, The solid line is forced out to
the integer Just greater than the optimum length at the
fourth code,

It i1s noted that in certain instances the above pro-
cedure is not complete. First, if Py > % , the first
code length must be one. Secondly, the last two code
lengths must always be the same for an exhausted code,
regardless of the relative values of Py and Ph - 1°
Thirdly, for convenience, the probabilities are arranged
in monotonically decreasing order.

For more refined work, the code lengths assoclated

with all the lattice-points in the restricted volume
found above must be calculated and compared. In this

respect, limits may be placed on the lengths of the
individual code lengths., These limits are the maximum

and minimum values found by using the LaGrangian method

as follows:

R T R T R

e
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To find the maximum and minimum values of a

particular b(r), notice that

N
z —l-(-:l,
1=1 2208

expresses b(r) as an implicit function of the
other b(i), and that
b(r)

2b(x) = - gSTTT 1 =1, 2 ... N (except r).

2b(1) 2
Maximize (or minimize) this function, b(r) = F b(1),
subject to

N
F T o) [bw) - nsy)] =0,
i=1

which is the condition that the maximum and minimum
of each b(i) are on the plane through Shannon's

point. b(si) are the coordinates of Shannon's

point. Thus,

b(r)
'iBTD"lP';%T)':O 1= 1, 2 ... N (except r).

Sumning,
b(r) 2 =
-20\T [ 1 - ZB%;y'] = 1P [1 - p(r)] =0,
and
-.Jé_ = EEﬁfl_:_l
[P] 1 - p(r) ~

Substituting the values of the b(i) given by the
partial derivative equations in the conditional

equation gives:



*

RE) [o(r) - bls,)) *

1 N 1 - p(r) 1 ] _
‘ﬁi ?,l p(1) [b(r)-r log, 2TN?Y___1'*1082 ST - b(sy) ] =0
except r

N
b(r) - £ (1) bls) +[1 - p(r)]logz 1 - p(r)

i=1
+ H, - p(r) log 1l =0
N 2 pir)

N
- 1-p(r) = (1) b(s;) - Hy +
b(r)+[1 p(r)] log, 6(5).. 1§1 P 8y Hy

+ p(r) log, 3%;7

This is a transcendental equation in b(r) and has
two roots, one of which is the maximum b(r), the
other the minimum. Note that if a lattice-point
representing a code better than Shannon's has been
found (by any method whatsoever), its coordinates
may be substituted in place of the b(si) above

and the range of b(r) reduced accordingly.
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CHAPTER I1I

CODING IN GRCUPS

Introduction

The first chapter has outlined the problem of
coding N possibilities into N discrete binary codes.
This has been done without thought of operating on the
possibilities in any way and without consideration of
what "source" is choosing the possibilities, It is the
purpose of this chapter to consider the result of one

form of cperation upon the possibilities before coding.

The nature of this operation may be called "grouping."

This means that, given a sequence consisting of choices
from the N possible choices, groups of these choices are
treated as units in the coding. This method of operating
on the sequence of choices was suggested by T. P. Cheatham

of the Research Laboratory of Electronics. The following

. 1s an example of this scheme:

Choices Pi Binary Code
1 0.333 1l
2 0.333 01
3 0.333 00

Love = 1.667 binary digits
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Groups_of Choices _E Binary Code
11 0.111 111
12 0.111 110
13 0.111 101
21 0.111 100
22 0.111 011
23 0.111 010
31 0.111 001
32 0.111 0001
33 0.111 0000

- binary digit
Lave = 1.611 original céoice

It 1s seen that grouping the choices before coding
reduces the code length (in the above example) and may be
a method of reducing the needed capacity of a transmission
system.

The improvement in code length shown by the example
above is due to the nature of the numbers selected. A
binary code can be made better for nine things than for
three because of the relations among the powers of two
and the powers of three. There is, in group coding, how-

ever, a more fundamental improvement also to be expected.
This is the approach of the information rate, as calculated

for a group of cholces, to the actual information rate of

ithe source. This has been thoroughly discussed by Shannon,

who has proved that

= 1 -
H, = g I P, log; 7 ,
g g
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the information rate calculated for groups of g choices
or symbols, is a monotonic decreasing function of g,
Therefore, if groups of choices are coded efficiently, it

may be possible to reduce the average code length to.Hg.

Grouping of Equally-Lilkely Independent Choices

The .grouping of choices increases the number of
possibilities to Ng, where g 1s the number of choices in
the group. If the substitution N = N€ 1s made in the
equations developed for calculating the average code
length fdr equally probable possibilities in Chapter I,
and the result divided by g, the formulas hold for the
present case. That is, the average code length for the
NE is;

2Q+l

2+ @ - NB

Lave = 2 binary digits.

The difference between this length and the theoretical

minimum 1s;

,atl
5= 2+ @ - w8 -8 1B N hipapy igits
g original choice °

Letting
x'= @+1-¢glog, N,

l +x' -~ 2x'

g
In these expressions, @ 1is the integer just less than

D =

log2 Ng.
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The loss in the code 1s seen to be similar to the loss
without grouping, =xcept for the g in the denominator. It
is seen that increasing the number of choices in a group
reduces the loss in coding approximately as % . The
maximum and minimum values of this function may be found
as functions of N or g, The equation may be normalized

and plotted, in intervals of constant € , as

gD=1+x' -2,

which is the same as Figure 1 excevt that g appears 1in
the expression for x'. Proper use of this curve enables
computation of the results of grouping cholces that are
equally probable. An example of this computation has been
plotted in Figure 5 for N = 3. The dotted curve shows the
theoretical 1limit (if g varies continuously). The solid
lines connect the actual results which are obtained for
integer values of g.

It is interesting, and important, to notice that the
curve of actual values is not monctonically decreasing.
In other words, although grouping of cholces tends to
improve the coding as the groups are made larger, the
nature of binary (or other digital) coding may result in
a worse code if the group's size is not increased suffi-
ciently. In the case of N = 3 equally-probable possi-
bilities, the group of five choices may be coded more
efficiently than groups of six, seven, eight, or nine

choices. This fact 1s important, because there would be
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a great deal wasted in bullding equipment, for example,

to group and code beyond g = 5 for this special case.

Two Simple Examples of Grouping Choices with Unegqual
Probabilities

It is clear that grouping in the case of non-equally-
lixely choices is a difficult operation to evaluate, since

it is difficult to find the optimum codes in this case.

Nevertheless, Shannon has proved that the error in coding
is lesc than % plus the difference between the information
rate calculated for groups of length g and the true rate.
In order to show the results of grouping with unequal
nrobabilities, two cases have been partially calculated.
The results are shown in Figures 6 and 7.

Figure 6 is plotted for the case of three choices
with probabilities p; = 3/6, py = 2/6, and Py = 1/6. D
is the number of extra binary dizits necded per original
choice. It is seen that grouping reduces this loss.
Figure 7 is a plot of the same gquantities for the original
probabilities p, = 7/10, py = 2/10, Py = 1/10, Here, the
curve 1s not monotonically decreasing and indicates the
same type oscillatory behavior as the curve for p; = pé =
p3 = 1/3. It is noted in this case that the original cnde

is about 12% long, while the code after grouping two

choices is only about 0.8% long.
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CHAPTER III
A DEVICE FOR CODING GROUPS OF PULSES

Introduchion

It has been shown in the previous chapters that
sroper codlng of groups of cholces nay reduce the average
code length. This saving may be very important. For
example, in storing information, it i{s usually desirable
to reduce the message length in order to conserve the
storage facility. Likewise, in transmitting signals, the
shorter codes conserve time, For these reasons, it is
interesting to consi@er the possibility of building a de-
vice for such coaing.

This chapter describes a simple device involving a
cathode-ray tube, mask, and photo-ccll (and assoclated
circuits), which, though severely limited in range, pTro-

vides a means of grouping and coding pulses.

Two somewhat different methods of operation, using
the same equipment, wsre employed. In both methods, the
cathode-ray tube, mas., and photo-cell were arranged in &
manner quite similar to that employed by Dr. A. B, Macnee
as a "Function Generator."6 That is, the mask (a glass

photographic slide) is placed next to the screen of a

cathode-ray tube and the photo-cell placed in front of

IR
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both so as to respond to lignt from the fluorescent screen ?%
that is not blanked out by the dark portions of the mask, i

The photo-cell output, a current proportional to the

light coming through the mask, is converted to a voltage
and amplified in a suitable amplifier. The output of the P
amplifier is applied to the vertical deflection plates of
the cathode-ray tube in such polarity as to move the
electron beam upwards,if a large amount of light is falling
on the photo-cell, and downward in the other case., The
result of this action ir that the clectron beam of the
cathode-ray tube, 1f it were causing a spot of light not
obstructed by the masiz, is moved upwards until the spot of ;
light reaches the edge of a dark area on the mask, At 5
this position, the spot continues upward until an equi-
librium positinn 1s reached where the light 1c partially

obstructed, and just sufficient light reaches the photo-

PRPE o

cell to malntain the position of the spot. With this
arrangement, it is thecn possible to move the electron beam
horizontally, and the spot of 1light will "follow" the edge y
~f the black area on the mask.
In the fuunctiosn generator, the mask is of simple form, "
The edge of the black area 1s shaped to represent the
arbitrary function. In the present device, the mask 1is §
amore complicated and might appear as shown in Figure g,
More than one edge between an opaque and transparent

portion of the mask are shown. Thus, with this mask, the
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equipment may be thought of as a multi-valued function-
generator,

The multi-valued functiosn-generator is used in the
coder to perform the operations of quantizing, grouping,
and coding. The signal to be coded consists of a series
of amplitude-modulated pulses. These are apnlied to the
vertical plates of the function-generator at a time when
the spot is at posgitions (1) and (2), as shown in Figure
8. The first pulse at position (1) causes the electron-
beam and spot to move up into one of the two transparent
spaces shown above position (1). The feedback action of
the light and photo-cell causes the spot to seek an
equilibrium at the edge of a black area, as described
above. The spot is moved horizontally so that when the
next amplitude-moduiated pulse arrives, it is in one of
the two positions numbered (2) on the figure. The second
pulse then moves the sp0t into one of the four transparent
"slots." In this mannar, the utwo signal pulses have been
grouped to indicate one of the four slots. Although i1-
lustrated with a masx which allows only two levels to be
distinguished and groups of only two pulses toc be formed,
it is seen that more complicated masks can be used. The
fact that only a finite number of "slots" are possible at
each pulse position "quantizes" the signal pulses or at
least the effect of the signal pulses. The further use

of the equipment to produce code pulses 1s simply to
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continue to move the spot horizontally in the long slots

to the right of position (2). The edges of these black

areas may be modified to produce code waveforms,

Brief Description of the Circuits of Coder #1

Figure 10 is a simplified diagram of the circuits
used in obtaining the operation discussed above. Vl is
simply a multi-vibrator whiéh causes short positive gate
voltages to appear on the screen grid of the sampler tube
V2. If a continuous signal is fed to the contrcl grid of
72, its ~utput will be a train of ampliitude-modulated
pulses. These are amplified and inverted in V3. These

three tubes thus produce a series of amplitude-modulated

pulses,

The cathode-ray tube, photo-cell, and amplifier (V4)
comprise the function-generator, which operates to keep
the spot positioned on the edge of a dark area of the mask,
It will be noted, however, that the outputs of the two
amplifiers (V3 and V4) are not fed directly to the vertical
deflecting plate of the cathode-ray tube. Rather, the two
voltages are fed through germanium crystal dlodes to the

capacitor C The output of Vé, which is in the form of

2.
positive pulses, divides across C1 and 02 and leaves C2

charged. Thic causes the spot to jump up on the mask, as
described before. The output of V4, which is a continuous

voltage depending on the light incident on the photo-cell,
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may then raise the potential on C, in order to move the

2

spot upward on the mask. However, the potential on 02

may not be reduced, due to the dlode. Therefore, the mask
must always cause the spot to move upward. Figure 8 shows

the mask is designed in such a way as to meet thils re-

guirement, Further, if the spot jumps to a position be-
hind an opaque portion of the mask, it will remain there
until the horizontal deflectlon has moved it far enough-
to "find" one of the transparent tracks,

The other circuits shown were designed to perform the
following auxiliary functions, V7 is a multivibrator
which divides frequency, giving one output pulse for
several input pulses from Vl. If the amplitude-modulated
pulses are hein~ grouped by twos, this multivibrator would
be set to give one output pulse for each two input pulses.
The pulses from V7 trigger both .Jie sweep on the cathode-
ray horizontal plates and the discharge tube VB'

Several additional pleces of equipment are required
for operation. A laboratory "trigger-box" starts multi-
vibrator Vl and determines the sampling rate, The cathode-
ray tube, a 5LP5, is housed in a Dumont 208 oscilloscope
cabinet, with the regular tube removed. This modified

oscilloscope provides operating voltages for the cathode-

ray tube and also the sweep circults used.
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Results Obtained with Coder #1

Unfortunately, the results obtained with Coder #1

were unsatisfactory to the author., Several rough masks

were made, and only in the simplest cases did operation
follow anywhere nearly like that expected. The pulse
forming, modulating, and amplifying stages worked ap-
proximately as designed. The function-generator also per-
formed reasonably well when tested on simple masks with
only cne black edge to follow. The following defects
were observeds:

(1) It was foundé that the function-generator
was not able to hold the position of the spot in the
narrow slots -- the overshoot of the feedback system
causing the spot to jump too far,

(2) The single-ended deflection system produced
serious defocusing of the electron beam. Tiis changed
the characteristics of the feedback system so that
operation depended on the vertical position of the

electron beam,

(3) The adding circuit, in which the feedback

L S P ——m X en
the spot in one direc

-t

ion,

system could only move 5

made the deflection system more sensitive to dis-
turbances, especially those which might move the
spot upward, since there would be no restoring

voltage developed.
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(4) The adding circuit resulted in interference
between the signal-modulated pulses and the feodback
system holding the spot position. That is, If the
function-generator operates fast (as 1s desirable in
following the changing edges of the black areas of the
mask), it may cause improper voltage division of the

signal pulses on C1 and 02’

Some time was spent investigating the troubles in
this system and various minor modifications attempted.
Although operation improved, it was never found to be

stable, and the conclusion was reached tnat the system was

inherently poor for the reasons enumerated above.

Description of Coder #2

In order to resolve some of the serious difficulties
encountared with Coder #1, the system was redesizned and
rebuilt, uslng che same equipment in a somewhat different
manner., In this second arrangement, the function-gencrator
feedback system operates independently of all other parts
of the system, thereby enabling several circuit improve-
ments. The function-generator in this arrangement performs
the solitary function of positioning the spot of 1light on
the edge of a transparent area on the mask,

The signal pulses are obtained as before but are now
applied to the horizontal deflecting rlates of the oscilil-

loscope. A new type mask, illuctrated in Figure 9, is used.
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The cycle of operation starts with the spot at position
(A) on this mask. The first amplitude-modulated pulse
causes a horizontal deflection to the right nroportional
to the pulse height. The vertical deflection system then
positions the spot against the mask by moving it upward.
The spot is then moved to position (B), and the second
signal pulse causes a second deflection to the right.
When the spot has come to rest agalnst a black edge again,
it is swept across to follow the coded black edge.
Figures 11 and 12 show the circuits of Coder #2.
It will be néficed that the vertical deflection system 1s
entirely independent of all other circuits. The cathode-

ray tube and photo-cell are the same as in Coder #1, but

the amplifier is quite different. The amplifier of the
Dumont 208 oscilloscope, in which the cathode-ray tube is
mounted, has been used to get push-pull operation at de-
flection plate voltages which will cause little defocusing.
The gain is greater, and since the system will deflect
both ways, disturbances have less effect than on Coder #l.
The diode and potentiometer arrangement in the grid of the
amplifier clipn the input signal if it zoes tco far positive.
This prevents deflection of the beam off the bottom edge
of the scope and allows the phosphor of the cathode-ray
tube to be overated in a biased condition. That is, a
certain average amount of 1ight is always present. The

1ight may therefore jpcrease or decrease towards its
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maximum or minimum value at about the same rate. The
large gain in the amplifier means thie 1light change for_
full deflection may be small, and therefore the system
responds mere rapidly. Operating in this manner, the time
constant of the phosphor, which is normally about 25 us,
may be reduced to about 2.5 us. The phosphor light
build-up and decay are still the limiting factors in the
response of vertical position systems.

The same circuits as were used in Coder #1 produce
positive amplitude-modulated pulses, and these are fed to
the circuit of V9 on Figure 12. This circuit is a type
of step-generator and operates as follows., The cycle
starts with 02 charged to a high value of voltage (due to
other circuits). When a positive pulse is applied to Cl’
its leading edge is differentiated in the short time
constant of C; and the 1N34 diode (Vl4) in series with
the low output impedance of the cathode follower V9,
leaving Cl charged. The trailing, negative-going edge of
the pulse discomnects V,, but results in a division of
charge across Cl and C, through the 6ALS diode (VIS)‘

The voltage on C2 thus "steps" down an amount proportional
to the amplitude of the pulse fed to Cl' Since the input
impelance of the cathode follower is high, the C2 voltage
tends to remain fixed. The next pulse results in another

step down., Each time this occurs, however, the cathode

follower sets a different level for the charging of Cl’
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and the n-t result 1is the subtraction »>f a voltage pro-
portional to each zmplitude-madulated pulse.

The output of this circuit is fed to the horizontal
deflection circults of the cathode-ray tube, Here again
the amplifiers of the Dumont 208 chassis are utlilized.
This deflects the spot from the pesition (A) on the mask,

After a short time (about 25 us), the vertical de-
flection system has moved the spot against the black
portion of the mask, and it is necessary to move the spot
horizontally to pocition (B). This is accomplished by the
circuit of V

which is similar to that of V Positive

10’ 9°
pulses of equal magnitude are fed to this circuit from
vll and V12. These two stages are multivibrators which
simply serve to introduce the 25 us delay. When this
pulse occurs, the voltage across C4 steps down and,

acting through the associated cathode follower le and the
diode V13, reduces the voltage on 02 to the same level as
C4. The values of the capacitors C3 and C4 are chosen so
that the voltage step on C4 moves the spot to position

(B) on the mask, This process may be repeated to form
grours of more than two.

The remaining tubes perform auxiliary functions, V16
is a multivibrator which runs at a sub-multiple of the
sampling frequency. It is triggered by a pulse frum V12,
so that after the spot has been moved to position (B),

it causes a positive gate on the grid of V17. V17 then
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conducts, discharging/g;d causing the spolt Lo sweep across
the coded portion of the mask. At the end of this multi-
vibrator gate, a negative trigger is applied to the
charging tube V18» which cuts 1t off, allowing both C2

and C4 to be recharged to a positive voltage,

Results Obtained with Coder #2

Coder #2 proved able to follow a mask such as that
snown in Figure 9 with a sampling frequency of about 10,200
cycles per second., It is seen that, 1f 295 us 1is allowed
for stabilizing the spot at position (B), 25 us for the
code time (which seems a minimum if the spot i1s to follow
the code edge at all), and 29 us more for setting the spi
back at position (4), that there must be a minimum of 75 us
between sampling pulses. This limits the sampling frequency
to about 13 kilocycles.

The overshoot of the spot is still the 1limiting factor

in how close the various slots on the maslk may be nlaced.

If the overshoot is reduced, the spot will not positicn
itself as quickly, and the sampling rate would be less for
reliable operation.

Some disturbance due to 60-cycle piclk-up on the
equipment was noticed. This disturbance results in
effectively introducing a sixty-cycle modulztion on the

sample pulses.

i e
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Suggzestions for Mirther Study

It has not proved practical, in the time dewo ted to
thiis research, to cxhaust completely the possibilities
of such a device ac described above. WNevertheless, 1t is
believed that for slow speed sampling (less than abcut 2
“ilocyeles), and where only a few codes result from the
grouping (less than about 50), that a device similar to
that described micat nerform ereditably. Some refincaent

of the precsent circuilts to Improve those deficiencies

L

neted nhove should suffice for ihis,

-

The use o separate cathode-ray tubes for grouping
and for coding would help to extend the range of sampling
frequencies to 20 kilocycles or more.

In the case where a hizh sampling rate seems necessary
and 1t 1s desired to group a considerable number of pulses,
the problem is =2 severe one in switching techniques. Still,
it seems important enough to warrant thorough investigation,

A closely related problem to coding i1s always that of
de-coding. This problem may sometimes be solved by in-
version of the coding equipment, but this need not always
be so, An investigation of de-coding methods will be
essential if coding of the type described in the first

two chapters 1s to be exploited.
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