TD 3: Application des jeux d'instructions PIC16F84

Configuration des ports: 13 lignes d'entrées/sorties, réparties en un port de 5 lignes (PORTA) et un port de 8 lignes (PORTB)

La configuration des bits PORTA se fait dans le registre TRISA

- ➤ Configurer un bit du **PORTA** comme entrée → mettre **1** dans le bit correspondant dans TRISA
- ➤ Configurer un bit du **PORTA** comme sortie → mettre **0** dans le bit correspondant dans TRISA

TRISA	Х	Х	Х	1	0	1	1	0
PORTA	Χ	Χ	Χ	RA4 (E)	RA3 (S)	RA2 (E)	RA1 (E)	RA0 (S)

La configuration des bits PORTA se fait dans le registre TRISA

- ➤ Configurer un bit du **PORTB** comme entrée → mettre **1** dans le bit correspondant dans TRISB
- ➤ Configurer un bit du **PORTB** comme sortie → mettre **0** dans le bit correspondant dans TRISB

TRISB	1	1	1	1	0	0	0	1
PORTB	RB7 (E)	RB6 (E)	RB5 (E)	RB4 (E)	RB3 (S)	RB2 (S)	RB1 (S)	RB0 (E)

1 : entrée (E), 0 : sortie (S)

- Etapes de la configuration :
 - ❖ Accéder à la Bank 1
 - ❖ Déterminer le mot à mettre dans le registre TRISx
 - ❖ Mettre ce mot dans le registre de travail W
 - Transférer le contenu de W dans le registre TRISx
 - Accéder à la Bank 0, pour pouvoir accéder au PORTx

Le registre STATUS :

7	6	5	4	3	2	1	0	
IRP	RP1	RP0	/TO	/PD	Z	DC	С	

Le registre d'état contient 8 bits :

- ✓ 5 bits, témoins (drapeaux) caractérisant le résultat de l'opération réalisée par la CPU (lecture seule)
 - /TO: (Time Out) débordement du timer WDT
 - /PD: (Power Down) caractérise l'activité du chien de garde WDT
 - \triangleright **Z**: (Zéro) résultat nul pour une opération arithmétique et logique (résultat=0→Z=1, résultat≠0 → Z=0)
 - > DC: (Digit Carry) retenue sur un quartet (4bits)
 - C: (carry) retenue su un octet (8 bits) (Résultat > 0→C=0, résultat <0→C=1)</p>
- √ 1 bit : RPO : sélection de bank (bank 0 ou 1)
 (bit 5 du registre d'état =0→bank 0, bit 5 du registre d'état =1→bank 1)
- ✓ 2 bits : RP1 et IRP : pas pour le pic16F84
- Le registre W : registre de travail (accumulateur) : il est utilisé pour faire toute sorte de calcul, le résultat d : d : c'est le registre de destination, avec deux variantes :

d=0 résultat est placé dans W, d=1 : résultat placé dans le registre f

- Cycle d'exécution d'une instruction :
- ➤ Recherche de l'instruction
- Décodage de l'instruction
- Exécution
- > Ecriture du résultat

Exercice 1

- 1. Mettre 0 dans W
- 2. Charger la valeur 20_H dans W
- 3. Charger la valeur de W à l'adresse 020_H
- 4. Charger la valeur à l'adresse 020_H dans W
- 5. Charger la valeur 20 dans W

Exercice 2

- 1. Mettre à 1 le bit 5 de la valeur à l'adresse 003_H
- 2. Décrémenter la valeur à l'dresse 020_H, et stocke le résultat à la même adresse
- 3. Décrémenter la valeur à l'adresse 020_H, et stocke le résultat dans W
- 4. Décrémenter la valeur à l'adresse 020_H et stocke le résultat dans l'adresse 021_H
- 5. Tester si le bit C du registre d'état vaut 1

Exercice 3

Ecrire un programme qui additionne deux valeurs en RAM « val1 et val2 », et met le résultat dans une variable 8bits « Res »

Exercice 4

Configurer le PORT B en entrée, lire le contenu du PORT B

Mettre le résultat dans la case mémoire d'adresse OC_H

Exercice 5

Ecrire pour l'opération mathématique suivante, le programme qui la réalise

(100-1+15-31)/4

Exercice 6

Ecrire un programme PIC16f84 qui donne le résultat de multiplication de 5x10 et place le résultat dans l'adresse 0x0C.