Definition 2.9 We say that f is negligible in front of g in x_0 , if $\exists h(x)$ defined in a neighborhood of x_0 such that : $f(x) = h(x) \cdot g(x)$ and $\lim_{x \to x_0} h(x) = 0$ and we note in this case

$$f \underset{x \to x_0}{=} o(g) \Leftrightarrow \forall \varepsilon > 0; \forall x \in v(x_0) : |x - x_0| < \varepsilon \Rightarrow |f(x)| \le \varepsilon |g(x)|$$
$$\Leftrightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0 \quad if \ g(x) \neq 0$$

Definition 2.10 We say that f is domained by g in the neighborhood of x_0 if $\exists b(x)$ defined and bounded (in the neighborhood of x_0) such that f(x) = b(x).g(x), and we note in this case

$$f \underset{x \to x_0}{=} O(g) \Leftrightarrow \exists M > 0 \ et \ \exists \delta > 0, \forall x \in v \ (x_0) \ (\text{neighborhood of } x_0) \Rightarrow |f(x)| \leq M |g(x)|$$

that is to say $\frac{f}{g}$ is bounded in the neighborhood of x_0

Definition 2.11 f and g are equivalent to $v(x_0)$. If $\exists \hbar(x)$ defined at $v(x_0)$ such that $f(x) = \hbar(x) g(x)$ and $\lim_{x \to x_0} \hbar(x) = 1$, and we note in this case

$$f \sim g \Leftrightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1, \text{ if } g(x) \neq 0$$

Theorem 2.5 • If $f_1 \sim g_1$ and $f_2 \sim g_2$ then : $\begin{array}{c} f_1 f_2 \sim g_1 g_2 & |f_1| \sim |g_1| \\ \frac{f_1}{f_2} \sim \frac{g_1}{g_2} & f_1^{\alpha} \sim g_1^{\alpha} \end{array}$

Standard equivalence list

 $1 \bullet \sin x \underset{0}{\sim} x \qquad \qquad 6 \bullet e^{x} - 1 \underset{0}{\sim} x$ $2 \bullet \tan x \underset{0}{\sim} x \qquad \qquad 7 \bullet \arcsin x \underset{0}{\sim} x$ $3 \bullet \cos x - 1 \underset{0}{\sim} -\frac{x^{2}}{2} \qquad \qquad 8 \bullet \arctan x \underset{0}{\sim} x$ $4 \bullet (1 - x)^{\alpha} \underset{0}{\sim} 1 - \alpha x \qquad \qquad 9 \bullet \cot g x \underset{0}{\sim} \frac{1}{x}$ $5 \bullet (1 + x)^{\alpha} \underset{0}{\sim} 1 + \alpha x \qquad \qquad 10 \bullet \ln (1 + x) \qquad \underset{0}{\sim} x$

Example 2.7 Calculate the following limits : $\lim_{x \to 0} \frac{\sin x \ln (1+x^2)}{x \tan x}$ we have $\sin x \underset{0}{\sim} x$, $\tan x \underset{0}{\sim} x$ and $\ln (1+x^2) \underset{0}{\overset{x \to 0}{\sim}} \frac{\sin x \ln (1+x^2)}{x^2}$ then $\lim_{x \to 0} \frac{\sin x \ln (1+x^2)}{x \tan x} \underset{0}{\sim} \lim_{x \to 0} \frac{x \ln (1+x^2)}{x \cdot x} \underset{0}{\sim} \lim_{x \to 0} \frac{x \cdot x^2}{x \cdot x} = \lim_{x \to 0} x = 0$ hence $\lim_{x \to 0} \frac{\sin x \ln (1+x^2)}{x \tan x} = 0$

Remark 2.1 To eliminate the indeterminate form 1^{∞} , we use the form of the following limit

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e = \lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^{x}$$
$$\lim_{x \to 0} (1-x)^{\frac{1}{x}} = e^{-1} = \lim_{x \to +\infty} \left(1 - \frac{1}{x}\right)^{x}$$
$$\lim_{f(x) \to 0} (1+f(x))^{\frac{1}{f(x)}} = e = \lim_{f(x) \to +\infty} \left(1 + \frac{1}{f(x)}\right)^{f(x)}$$

more general

3.1 Continuous function at one point :

Definition 3.1 Let $f: D_f \to \mathbb{R}$ be a function and $x_0 \in D_f$, we say that f is

• continuous at point $x_0 \in D_f$ if and only if $f'(x_0)$ exists and $\lim_{x \to x_0} f(x) = f(x_0)$ which is equivalent to

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in D : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon.$$

• continues to the right of point x_0 , iff $\lim_{x \to x_0} f(x) = f(x_0) \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall x \in D :$ $0 < x - x_0 < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon.$ • continues to the left of point x_0 , iff $\lim_{x \to x_0} f(x) = f(x_0) \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall x \in D :$ $0 < x_0 - x < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon.$ Important : $\lim_{x \to x_0} f(x) = f(x_0) \Leftrightarrow \lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = f(x_0)$

Definition 3.2 (Sequential Caracterization) :Let $f : D_f \to \mathbb{R}$ be a function and $x_0 \in D_f$. we say that f is continuous at x_0 if and only if for every sequence $(u_n)_n$ of points of D_f such that $\lim_{n \to +\infty} u_n = x_0$, we have $\lim_{n \to +\infty} f(u_n) = f(x_0)$.

Operations on continuous functions

Proposition 3.1 Let f and g two maps of D in \mathbb{R} and $x_0 \in D$. If f and g are continuous at x_0 then f + g, f.g are continuous at $x_0.$ If $\forall x_0, g(x) \neq 0$, then $\frac{f}{g}$ is continuous at x_0 .

Proposition 3.2 Let f and g be two maps of D in \mathbb{R} and $x_0 \in D$. If f is continuous at x_0 and g is continuous at $f(x_0)$ then $g \circ f$ is continuous at x_0

Remark 3.1 f is said discontinuous at x_0 if

- f is not defined at x_0
- the limit exists but different from f(x)
- the limit does not exist.

3.2 Continuous Functions over an interval :

Definition 3.3 We say that the real function $D_f \to \mathbb{R}$ is continuous over the entire interval D_f if and only if, it is continuous at every point of this interval. that's to say

 $\forall x_0 \in D_f, \forall \varepsilon > 0, \exists \delta > 0, \forall x \in D : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$

Theorem 3.1 Let [a, b] be a closed and bounded interval and $f : [a, b] \to \mathbb{R}$ a continuous map. Then f is bounded and reaches its upper and lower bounds.

 $\exists \alpha \in [a, b] : f(\alpha) = \sup f(x) ; x \in [a, b]$ $\exists \beta \in [a, b] : f(\beta) = \inf f(x) ; x \in [a, b]$ $\forall x \in [a, b], \text{ we have } f(\beta) \le f(x) \le f(\alpha)$

Theorem 3.2 (*intermediate Value Theorem*) : If f is a continuous function on a closed interval [a, b] such that : f(a) and f(b) have different signs (f(a).f(b) < 0) then $\exists c \in]a, b[: f(c) = 0$

Theorem 3.3 Second theorem of intermediate values : Let f be a continuous function on an interval [a, b], then for everything y strictly included between f(a) and f(b)we have $\exists c \in [a, b]$ such that f(c) = y

Corollary 3.1 1) The image of any interval $I \subset \mathbb{R}$, of a continuous function on I will necessarily be an interval.

2) The 'image of any closed interval [a, b], of a continuous function on [a, b] will necessarily be a closed interval.

Application: Let $f : [0,1] \to [0,1]$ continue Show that f admits at least one fixed point i.e $\exists x \in [0,1]$ such that f(x) = xlet g(x) = f(x) - x, it is clear that g is continuous on [0,1]we have $g(0) = f(0) - 0 = f(0) \ge 0$; $0 \le f(0) \le 1$ $g(1) = f(1) - 1 \le 0$; $0 \le f(1) \le 1$ So according to the intermediate value theorem $\exists x \in [0, 1] : g(x) = 0 \Leftrightarrow f(x) - x = 0$. Hence $\exists x \in [0, 1] : f(x) = x$

3.3 Uniforme continuity :

Definition 3.4 We say that the real function $f : D \to \mathbb{R}$ is uniformly continuous on the interval D if only if, it satisfies

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x_1, x_2 \in D; x_1 < x_2 : |x_2 - x_1| < \delta \Rightarrow |f(x_2) - f(x_1)| < \varepsilon$$

Remark 3.2 1> In uniform continuity over an interval the constant δ depends only on the choice of ε , on the other hand in simple continuity over an interval, δ depends on the choice of x_0 and ε

2> Uniform continuity on an interval \blacksquare continuity on an interval, it is enough to take $x_2 = x$ and $x_1 = x_0$ in the definition of continuity

Theorem 3.4 (*Heine*) : Any continuous function on [a, b] is uniformly continuous on this interval.

Example 3.1 • The function $f(x) = \alpha x, \alpha \neq 0$ is continuous on \mathbb{R} . Indeed

 $\forall \varepsilon > 0, \exists \delta > 0, \forall x_1, x_2 \in D; x_1 < x_2 : |x_2 - x_1| < \delta \Rightarrow |\alpha x_2 - \alpha x_1| = |\alpha| |x_2 - x_1| < \varepsilon$

we take $\delta = \frac{\varepsilon}{|\alpha|}$

• on the other hand the function $f(x) = \frac{1}{x}$ is not uniformly continuous on [0, 1] because

$$\exists \varepsilon = 1, \forall \delta > 0, \exists x_1 = \frac{1}{2n}, n \in \mathbb{N}^*, \exists x_2 = \frac{1}{n} : |x_2 - x_1| = \left|\frac{1}{n} - \frac{1}{2n}\right| = \frac{1}{n} < \delta \text{ and}$$
$$|f(x_2) - f(x_1)| = \left|\frac{1}{x_2} - \frac{1}{x_1}\right| = n \ge 1.$$

3.4 Monotonic functions et la continuité :

Theorem 3.5 Let $f : I \to \mathbb{R}$ be a function defined and continuous on the interval *I*. Then

f is continuous on $I \Leftrightarrow f(I)$ is an interval

Theorem 3.6 Let $f : I \to \mathbb{R}$ be a function defined and continuous on the interval I. If f is strictly monotonic on I, then f is injective on J = f(I)

Theorem 3.7 Let $f : I \to \mathbb{R}$ be a function. $(I \subset \mathbb{R} \text{ is an interval})$.

If f is strictly monotonic and continuous on I, then

1. f is a bijection of I in J = f(I)

2. The inverse function $f^{-1}: J = f(I) \to I$ is strictly monotonic and continuous onr J

Exemple : Arcsinus function is a reciprocal function of the sine function on the interval $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$:

arcsin : $[-1,1] \rightarrow \left[\frac{-\pi}{2},\frac{\pi}{2}\right]$ $x \mapsto \arcsin x,$

and checks the following relationships :

 $\text{>If } x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right] : \sin x = y \Leftrightarrow x = \arcsin y \\ \text{>sin}\left(\arcsin x\right) = x, \quad \forall x \in [-1, 1], \\ \text{>arcsin}\left(\sin x\right) = x, \quad \forall x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right], \\ \text{>cos}\left(\arcsin x\right) = \sqrt{1 - x^2}, \quad \forall x \in [-1, 1],$

3.5 Extension by continuity :

Definition 3.5 Let I be an interval, x_0 a point of I. If the function is not defined at the point $x_0 \in I$ and it admits at this point a finite limit denoted l, the function defined by :

$$\widetilde{f}(x) = \begin{cases} f(x) & \text{if } x \neq x_0 \\ l & \text{if } x = x_0 \end{cases}$$

is called an extension by continuity of f at the point x_0 .

Example 3.2 The function $f(x) = x \sin \frac{1}{x}$ is defined and continues on \mathbb{R}^* , and for all $x \in \mathbb{R}^*$ we have

$$|f(x)| = \left|x \sin \frac{1}{x}\right| \le |x|$$
 therefore $\lim_{x \to 0} f(x) = 0$. the extension by continuity of f

at point $x_0 = 0$ is therefore the function f defined by :

$$\widetilde{f}(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Example 3.3 Find an extension by continuity at \mathbb{R} of the following function :

$$f(x) = \frac{x^3 + 5x + 6}{x^3 + 1}, \quad D_f = \mathbb{R} - \{-1\}$$

We have $\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{x^3 + 5x + 6}{x^3 + 1} = \lim_{x \to -1} \frac{(x+1)(x^2 - x + 6)}{(x+1)(x^2 - x + 1)} = \lim_{x \to -1} \frac{x^2 - x + 6}{x^2 - x + 1} = \frac{8}{3}$

The extension \widetilde{f} of f defined by $\widetilde{f}(x) = \begin{cases} \frac{x^3 + 5x + 6}{x^3 + 1} & \text{if } x \neq -1 \\ \frac{8}{3} & \text{if } x = -1 \end{cases}$