

BADJI MOKHTAR UNIVERSITY -ANNABA FACULTY OF TECHNOLOGY SCIENCES AND TECHNOLOGY DEPARTMENT (ST) 1st year LMD 2023/2024

Physics 2: Series 1 Coulomb's law, electrostatic field and potential

Exercise 1

We consider a system of point charges, represented by the Figure opposite. The positive charges q_1 and q_2 are fixed respectively at points O and A separated by d = 4 cm.

Consider a charge $q_3 > 0$, subject to moving along the segment OA. 1) Calculate the force F exerted by q_1 and q_2 on q_3 as a function of x.

2) Calculate the abscissa x_0 for which the charge q_3 is in equilibrium position.

We give: $q_1 = q_3 = q$; and $q_2 = \frac{q}{3}$

Exercise 2

Two identical balls of mass m and positive charge q are suspended from

the same point using a wire of length ℓ and form two simple pendulums.

After the repulsion each ball deviates from an angle θ .

-Find the distance r which separates them.

Data: tg $\theta \approx \sin\theta$, m = 10 g, ℓ = 120 cm, q = 2,4.10⁻⁸ C, K = 9.10⁹ Nm²C⁻², g = 10 m/s²

Exercise 3

Four point charges 2q, -4q, 2q and q are placed respectively	A(2q)	B(-4q)
at the vertices of a square ABCD of side a.		
1) Calculate the modulus of the field E at the point O intersection		
of the diagonals.		o a
2) Calculate the electric potential created by the four charges at point O.		
We give: $q=1 \ \mu C$ and $a=1 \ cm$	D(q)	C(2a)
Exercise 4		
Consider an equilateral triangle ABC with sides a and two	A	L
charges (-2q) and (+q) in B and C.		\backslash
1) Calculate the field E and the potential V created by the charges in A.		a
2) We place a third charge (-3q) at point A.		
Deduce the force exercised on this charge.		
3) Calculate the potential energy of (-3q) at point A.	С	В
Numerical application: $q=0.5.10^{-3}$ C and $a=5$ mm		

