Decision Trees

- Earlier, we decoupled the generation of the feature space from the learning.
- Argued that we can map the given examples into another space, in which the target functions are linearly separable.

Think about the Badges problem

- Do we always want to do it?
- How do we determine what are good mappings?

What's the best learning algorithm?

- The study of decision trees may shed some light on this.
- Learning is done directly from the given data representation.
- The algorithm ``transforms" the data itself.

This Lecture

- Decision trees for (binary) classification
 - Non-linear classifiers
- Learning decision trees (ID3 algorithm)
 - Greedy heuristic (based on information gain)
 Originally developed for discrete features
 - Some extensions to the basic algorithm
- Overfitting
 - Some experimental issues

Representing Data

- Think about a large table, N attributes, and assume you want to know something about the people represented as entries in this table.
- E.g. own an expensive car or not;
- Simplest way: Histogram on the first attribute own
- Then, histogram on first and second (own & gender)
- But, what if the # of attributes is larger: N=16
 - How large are the 1-d histograms (contingency tables) ? 16 numbers
- How large are the 2-d histograms? 16-choose-2 = 120 numbers
- How many 3-d tables? 560 numbers
- With 100 attributes, the 3-d tables need 161,700 numbers
 - We need to figure out a way to represent data in a better way, and figure out what are the important attributes to look at first.
 - □ Information theory has something to say about it we will use it to better represent the data.

Decision Trees

- A hierarchical data structure that represents data by implementing a divide and conquer strategy
- Can be used as a non-parametric classification and regression method
- Given a collection of examples, learn a decision tree that represents it.
- Use this representation to classify new examples

The Representation

Expressivity of Decision Trees

8

Decision Trees

- Output is a discrete category. Real valued outputs are possible (regression trees)
- There are efficient algorithms for processing large amounts of data (but not too many features)
- There are methods for handling **noisy data** (classification noise and attribute noise) and for handling missing attribute values

circle

CS446 Spring'17

square

red

square

Green

Shape

circle

DECISION TREES

Decision Boundaries

- Usually, instances are represented as attribute-value pairs (color=blue, shape = square, +)
- Numerical values can be used either by discretizing or by using thresholds for splitting nodes
- In this case, the tree divides the features space into axis-parallel rectangles, each labeled with one of the

Decision Trees

- Can represent any Boolean Function
- Can be viewed as a way to compactly represent a lot of data.
- Natural representation: (20 questions)
- The evaluation of the Decision Tree Classifier is easy
- Clearly, given data, there are many ways to represent it as a decision tree.
- Learning a good representation from data is the challenge.

Will I play tennis today?

Features

Outlook: {Sun, Overcast, Rain}

Temperature: {Hot, Mild, Cool}

Humidity: {High, Normal, Low}

□ Wind: {Strong, Weak}

Labels

Binary classification task: Y = {+, -}

Will I play tennis today?

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	O	Н	Н	W	+
4	R	M	Н	W	+
5	R	С	Ν	W	+
6	R	С	Ν	S	-
7	O	С	Ν	S	+
8	S	M	Н	W	-
9	S	С	Ν	W	+
10	R	M	Ν	W	+
11	S	M	Ν	S	+
12	O	M	Н	S	+
13	O	Н	Ν	W	+
14	R	M	Н	S	_

```
Outlook: S(unny),
O(vercast),
R(ainy)
```

```
Temperature: H(ot),
M(edium),
C(ool)
```

Basic Decision Trees Learning Algorithm

Data is processed in Batch (i.e. all the data available)

Algorithm?

Recursively build a decision tree top down.

0	Т	Н	W	Play?
S	Н	Н	W	-
S	Н	Н	S	-
0	Н	Н	W	+
R	M	Н	W	+
R	С	N	W	+
R	С	N	S	-
0	С	N	S	+
S	M	Н	W	-
S	С	N	W	+
R	M	N	W	+
S	M	N	S	+
0	M	Н	S	+
О	Н	Ν	W	+
R	M	Н	S	-
	S S O R R O S S R S O O	S H S H O H R M R C R C O C S M S C R M S M O H	S H H S H H O H H R M H R C N R C N O C N S M H S C N R M N S M N O M H O H N	S H H W S O H H W W R M H W W R C N W R C N S O C N S S M H W S C N W R M N W S M N S O M H S O H N W

Basic Decision Tree Algorithm

- Let S be the set of Examples
 - □ Label is the target attribute (the prediction)
 - Attributes is the set of measured attributes
- ID3(S, Attributes, Label)

If all examples are labeled the same return a single node tree with Label

Otherwise Begin

A = attribute in Attributes that <u>best</u> classifies S (Create a Root node for tree)

for each possible value v of A

Add a new tree branch corresponding to A=v

Let Sv be the subset of examples in S with A=v

if Sv is empty: add leaf node with the common value

of Label in S

Else: below this branch add the subtree

ID3(Sv, Attributes - {a}, Label)

End

Return Root

DECISION TREES

whv?

For evaluation time

- The goal is to have the resulting decision tree as small as possible (Occam's Razor)
 - But, finding the minimal decision tree consistent with the data is NP-hard
- The recursive algorithm is a greedy heuristic search for a simple tree, but cannot guarantee optimality.
- The main decision in the algorithm is the selection of the next attribute to condition on.

Consider data with two Boolean attributes (A,B).

- < (A=0,B=0), ->: 50 examples
- < (A=0,B=1), ->: 50 examples
- < (A=1,B=0), >: 0 examples
- < (A=1,B=1), + >: 100 examples

What should be the first attribute we select?

Splitting on A: we get purely labeled nodes.

Splitting on B: we don't get purely labeled nodes.

What if we have: <(A=1,B=0), - >: 3 examples

Consider data with two Boolean attributes (A,B).

- < (A=0,B=0), >: 50 examples
- < (A=0,B=1), >: 50 examples
- < (A=1,B=0), >: 0 examples
- < (A=1,B=1), + >: 100 examples

Trees looks structurally similar; which attribute should we choose?

Advantage A. But...

Need a way to quantify things

CS446 Spring'17

- The goal is to have the resulting decision tree as small as possible (Occam's Razor)
- The main decision in the algorithm is the selection of the next attribute to condition on.
- We want attributes that split the examples to sets that are relatively pure in one label; this way we are closer to a leaf node.
- The most popular heuristics is based on information gain, originated with the ID3 system of Quinlan.

Entropy

Entropy (impurity, disorder) of a set of examples, S, relative to a binary classification is:

$$Entropy(S) = -p_{\perp}log(p_{\perp}) - p_{\perp}log(p_{\perp})$$

- where P₊ is the proportion of positive examples in S
 and P₋ is the proportion of negatives.
 - ☐ If all the examples belong to the same category: Entropy = 0
 - ☐ If all the examples are equally mixed (0.5, 0.5): Entropy = 1
 - Entropy = Level of uncertainty.

In general, when p_i is the fraction of examples labeled i:

Entropy(
$$\{p_1, p_2, ..., p_k\}$$
) = $-\sum_{i=1}^{k} p_i \log(p_i)$

Entropy can be viewed as the number of bits required, on average, to encode the class of labels. If the probability for + is 0.5, a single bit is required for each example; if it is 0.8 -- can use less then 1 bit.

Entropy

Entropy (impurity, disorder) of a set of examples, S, relative to a binary classification is:

$$Entropy(S) = -p_{\perp}log(p_{\perp}) - p_{\perp}log(p_{\perp})$$

- where P₊ is the proportion of positive examples in S
 and P₋ is the proportion of negatives.
 - ☐ If all the examples belong to the same category: Entropy = 0
 - ☐ If all the examples are equally mixed (0.5, 0.5): Entropy = 1
 - Entropy = Level of uncertainty.

High Entropy – High level of Uncertainty

Low Entropy – No Uncertainty.

Entropy (impurity, disorder) of a set of examples, S, relative to a binary classification is:

$$Entropy(S) = -p_{\perp}log(p_{\perp}) - p_{\perp}log(p_{\perp})$$

where p_{+} is the proportion of *positive* examples in S and p_{-} is the proportion of *negatives*.

If all the examples belong to the same category: Entropy = 0

If all the examples are equally mixed (0.5, 0.5): Entropy = 1

Information Gain

Outlook

Low Entropy – No Uncertainty.

Sunny Overcast Rain

The information gain of an attribute a is the expected reduction in entropy caused by partitioning on this attribute

Gain(S, a) = Entropy(S) -
$$\sum_{v \in values(a)} \frac{|S_v|}{|S|} Entropy(S_v)$$

- where S_v is the subset of S for which attribute a has value v, and the entropy of partitioning the data is calculated by weighing the entropy of each partition by its size relative to the original set
 - Partitions of low entropy (imbalanced splits) lead to high gain
- Go back to check which of the A, B splits is better

Will I play tennis today?

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	M	Н	W	+
5	R	С	N	W	+
6	R	С	N	S	-
7	0	С	N	S	+
8	S	M	Н	W	-
9	S	С	N	W	+
10	R	M	N	W	+
11	S	M	N	S	+
12	0	M	Н	S	+
13	0	Н	N	W	+
14	R	M	Н	S	-

```
Outlook: S(unny),
O(vercast),
R(ainy)
```

```
Temperature: H(ot),
M(edium),
C(ool)
```

Will I play tennis today?

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	M	Н	W	+
5	R	С	Ν	W	+
6	R	С	Ν	S	-
7	0	С	Ν	S	+
8	S	M	Н	W	-
9	S	С	Ν	W	+
10	R	M	Ν	W	+
11	S	M	Ν	S	+
12	0	M	Н	S	+
13	0	Н	Ν	W	+
14	R	M	Н	S	-

Current entropy:

$$p = 9/14$$

 $n = 5/14$

$$H(Y) =$$
 $-(9/14) \log_2(9/14)$
 $-(5/14) \log_2(5/14)$
 ≈ 0.94

Information Gain: Outlook

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	M	Н	W	+
5	R	С	N	W	+
6	R	С	Ν	S	-
7	0	С	Ν	S	+
8	S	M	Н	W	-
9	S	С	Ν	W	+
10	R	M	Ν	W	+
11	S	M	N	S	+
12	0	M	Н	S	+
13	0	Н	N	W	+
14	R	M	Н	S	-

Outlook = sunny:

$$p = 2/5$$
 $n = 3/5$ $H_s = 0.971$

Outlook = overcast:

$$p = 4/4$$
 $n = 0$ $H_0 = 0$

Outlook = rainy:

$$p = 3/5$$
 $n = 2/5$ $H_R = 0.971$

Expected entropy:

$$(5/14)\times0.971 + (4/14)\times0$$

+ $(5/14)\times0.971 =$ **0.694**

Information gain:

$$0.940 - 0.694 = 0.246$$

Information Gain: Humidity

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	M	Н	W	+
5	R	С	Ν	W	+
6	R	С	Ν	S	-
7	0	С	Ν	S	+
8	S	M	Н	W	-
9	S	С	N	W	+
10	R	M	Ν	W	+
11	S	M	N	S	+
12	0	M	Н	S	+
13	0	Н	N	W	+
14	R	M	Н	S	-

Humidity = high:

$$p = 3/7$$
 $n = 4/7$ $H_h = 0.985$

Humidity = Normal:

$$p = 6/7$$
 $n = 1/7$ $H_o = 0.592$

Expected entropy:

$$(7/14)\times0.985 + (7/14)\times0.592 = 0.7785$$

Information gain:

$$0.940 - 0.151 = 0.1515$$

Which feature to split on?

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	M	Н	W	+
5	R	С	N	W	+
6	R	С	N	S	-
7	0	С	N	S	+
8	S	M	Н	W	-
9	S	С	N	W	+
10	R	M	N	W	+
11	S	M	N	S	+
12	0	M	Н	S	+
13	0	Н	N	W	+
14	R	M	Н	S	-

Information gain:

Outlook: 0.246

Humidity: 0.151

Wind: 0.048

Temperature: 0.029

→ Split on Outlook

An Illustrative Example (III)

Gain(S,Humidity)=0.151 Gain(S,Wind) = 0.048 Gain(S,Temperature) = 0.029 Gain(S,Outlook) = 0.246

An Illustrative Example (III)

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	M	Н	W	+
5	R	С	Ν	W	+
6	R	С	Ν	S	-
7	0	С	Ν	S	+
8	S	M	Н	W	-
9	S	С	Ν	W	+
10	R	M	N	W	+
11	S	M	N	S	+
12	O	M	Н	S	+
13	O	Н	N	W	+
14	R	M	Н	S	-

An Illustrative Example (III)

Continue until:

- Every attribute is included in path, or,
- All examples in the leaf have same label

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	M	Н	W	+
5	R	С	Ν	W	+
6	R	С	Ν	S	-
7	0	С	Ν	S	+
8	S	M	Н	W	-
9	S	С	Ν	W	+
10	R	M	N	W	+
11	S	M	N	S	+
12	O	M	Н	S	+
13	O	Н	N	W	+
14	R	M	Н	S	-

An Illustrative Example (IV)

Day	Outlook	Temperature	Humidit	y Wind	PlayTennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes

An Illustrative Example (V)

An Illustrative Example (V)

induceDecisionTree(S)

- 1. Does S uniquely define a class?
 if all s ∈ S have the same label y: return S;
- 2. Find the feature with the most information gain:
 i = argmax i Gain(S, Xi)
- 3. Add children to S:

```
for k in Values(X_i):

S_k = \{s \in S \mid x_i = k\}

addChild(S_i, S_k)

induceDecisionTree(S_k)

return S_i;
```

An Illustrative Example (VI)

Hypothesis Space in Decision Tree Induction

- Conduct a search of the space of decision trees which can represent all possible discrete functions. (pros and cons)
- Goal: to find the best decision tree
 - Best could be "smallest depth"
 - Best could be "minimizing the expected number of tests"
- Finding a minimal decision tree consistent with a set of data is NP-hard.
- Performs a greedy heuristic search: hill climbing without backtracking
- Makes statistically based decisions using all data

Today's key concepts

- Learning decision trees (ID3 algorithm)
 - Greedy heuristic (based on information gain)
 Originally developed for discrete features
- Overfitting
 - What is it? How do we deal with it?

How can this be avoided with linear classifiers?

- Some extensions of DTs
- Principles of Experimental ML

History of Decision Tree Research

- Hunt and colleagues in Psychology used full search decision tree methods to model human concept learning in the 60s
- Quinlan developed ID3, with the information gain heuristics in the late 70s to learn expert systems from examples
- Breiman, Freidman and colleagues in statistics developed CART (classification and regression trees simultaneously)
- A variety of improvements in the 80s: coping with noise, continuous attributes, missing data, non-axis parallel etc.
- Quinlan's updated algorithm, C4.5 (1993) is commonly used (New: C5)
- Boosting (or Bagging) over DTs is a very good general purpose algorithm

Example

Outlook = Sunny, Temp = Hot, Humidity = Normal, Wind = Strong, NO Outlook

Overfitting - Example

Outlook = Sunny, Temp = Hot, Humidity = Normal, Wind = Strong, NO Outlook

This can always be done – may fit noise or other coincidental regularities

Weak

Yes

Strong

No

Our training data

Overfitting the Data

- Learning a tree that classifies the training data perfectly may not lead to the tree with the best generalization performance.
 - □ There may be noise in the training data the tree is fitting
 - ☐ The algorithm might be making decisions based on very little data
- A hypothesis h is said to overfit the training data if there is another hypothesis h', such that h has a smaller error than h' on the training data but h has larger error on the test data than h'.

Reasons for overfitting

- Too much variance in the training data
 - Training data is not a representative sample of the instance space
 - We split on features that are actually irrelevant
- Too much noise in the training data
 - □ Noise = some feature values or class labels are incorrect
 - We learn to predict the noise
- In both cases, it is a result of our will to minimize the empirical error when we learn, and the ability to do it (with DTs)

Pruning a decision tree

- Prune = remove leaves and assign majority label of the parent to all items
- Prune the children of S if:
 - all children are leaves, and
 - □ the accuracy on the validation set does not decrease if we assign the most frequent class label to all items at S.

Avoiding Overfitting

- Two basic approaches How can this be avoided with linear classifiers?
 - Pre-pruning: Stop growing the tree at some point during construction when it is determined that there is not enough data to make reliable choices.
 - □ Post-pruning: Grow the full tree and then remove nodes that seem not to have sufficient evidence.
- Methods for evaluating subtrees to prune
 - Cross-validation: Reserve hold-out set to evaluate utility
 - Statistical testing: Test if the observed regularity can be dismissed as likely to occur by chance
 - Minimum Description Length: Is the additional complexity of the hypothesis smaller than remembering the exceptions?
- This is related to the notion of regularization that we will see in other contexts – keep the hypothesis simple
 Hand waving, for now.

Next: a brief detour into explaining generalization and overfitting

The i.i.d. assumption

- Training and test items are independently and identically distributed (i.i.d.):
 - □ There is a distribution P(X, Y) from which the data $\mathcal{D} = \{(x, y)\}$ is generated.
 - Sometimes it's useful to rewrite P(X, Y) as P(X)P(Y|X)Usually P(X, Y) is unknown to us (we just know it exists)
 - □ Training and test data are samples drawn from the same P(X, Y): they are identically distributed
 - \square Each (x, y) is drawn independently from P(X, Y)

A decision tree overfits the training data when its accuracy on the training data goes up but its accuracy on unseen data goes down

Empirical error (= on a given data set):
The percentage of items in this data set are misclassified by the classifier f.

- Model complexity (informally): How many parameters do we have to learn?
 - Decision trees: complexity = #nodes

- Expected error:
 - What percentage of items drawn from $P(\mathbf{x}, \mathbf{y})$ do we expect to be misclassified by f?
- (That's what we really care about generalization)

Variance of a learner (informally)

- How susceptible is the learner to minor changes in the training data?
 - □ (i.e. to different samples from P(X, Y))
- Variance increases with model complexity
 - □ Think about extreme cases: a hypothesis space with one function vs. all functions.
 - □ The larger the hypothesis space is, the more flexible the selection of the chosen hypothesis is as a function of the data.
 - □ More accurately: for each data set D, you will learn a different hypothesis h(D), that will have a different true error e(h); we are looking here at the variance of this random variable.

CS446 Spring'17

Bias of a learner (informally)

- How likely is the learner to identify the target hypothesis?
- Bias is low when the model is expressive (low empirical error)
- Bias is high when the model is (too) simple
 - The larger the hypothesis space is, the easiest it is to be close to the true hypothesis.
 - More accurately: for each data set D, you learn a different hypothesis h(D), that has a different true error e(h); we are looking here at the difference of the mean of this random variable from the true error.

Impact of bias and variance

Expected error ≈ bias + variance

Model complexity

Underfitting and Overfitting

- This can be made more accurate for some loss functions.
- We will develop a more precise and general theory that trades expressivity of models with empirical error

Avoiding Overfitting

- Two basic approaches How can this be avoided with linear classifiers?
 - Pre-pruning: Stop growing the tree at some point during construction when it is determined that there is not enough data to make reliable choices.
 - □ Post-pruning: Grow the full tree and then remove nodes that seem not to have sufficient evidence.
- Methods for evaluating subtrees to prune
 - Cross-validation: Reserve hold-out set to evaluate utility
 - Statistical testing: Test if the observed regularity can be dismissed as likely to occur by chance
 - Minimum Description Length: Is the additional complexity of the hypothesis smaller than remembering the exceptions?
- This is related to the notion of regularization that we will see in other contexts – keep the hypothesis simple
 Hand waving, for now.

Next: a brief detour into explaining generalization and overfitting

Trees and Rules

- Decision Trees can be represented as Rules
 - □ (outlook = sunny) and (humidity = normal) then YES
 - (outlook = rain) and (wind = strong) then NO
- Sometimes Pruning can be done at the rules level

DECISION TREES

Continuous Attributes

- Real-valued attributes can, in advance, be discretized into ranges, such as big, medium, small
- Alternatively, one can develop splitting nodes based on thresholds of the form A<c that partition the data into examples that satisfy A<c and A>=c. The information gain for these splits is calculated in the same way and compared to the information gain of discrete splits.

05

- How to find the split with the highest gain?
 - □ For each continuous feature A:
 - Sort examples according to the value of A
 - For each ordered pair (x,y) with different labels
 - Check the mid-point as a possible threshold, i.e.

$$S_{a \leq x'} S_{a \geq y}$$

Continuous Attributes

- Example:
 - □ Length (L): 10 15 21 28 32 40 50
 - □ Class: + + + + -
 - □ Check thresholds: L < 12.5; L < 24.5; L < 45
 - □ Subset of Examples= {...}, Split= k+,j-

we's

- How to find the split with the highest gain ?
 - ☐ For each continuous feature A:
 - Sort examples according to the value of A
 - For each ordered pair (x,y) with different labels
 - Check the mid-point as a possible threshold. I.e,

$$S_{a \leq x'} S_{a \geq y}$$

Missing Values

Diagnosis = < fever, blood_pressure,..., blood_test=?,...>

 Many times values are not available for all attributes during training or testing (e.g., medical diagnosis)

■ Training: evaluate Gain(S,a) where in some of the examples a value for a is not given

$Gain(S, a) = Ent(S) - \sum \frac{|S_v|}{|S|} Ent(S_v)$

Missing Values

$$Gain(S_{sunny}, Temp) = .97-0-(2/5) 1 = .57$$

 $Gain(S_{sunny}, Humidity) =$

- Fill in: assign the most likely value of X_i to s: argmax $P(X_i = k)$: Normal
 - 97-(3/5) Ent[+0,-3] -(2/5) Ent[+2,-0] = .97
- Assign fractional counts $P(X_i = k)$ for each value of X_i to **s**
 - .97-(2.5/5) Ent[+0,-2.5] (2.5/5) Ent[+2,-.5] < .97</p>
 Other suggestions?

66

Day	Outlook	Temperature	Humidity	Wind	PlayTennis	
1	Sunny	Hot	High	Weak	No	
2	Sunny	Hot	High	Strong	No	
8	Sunny	Mild	???	Weak	No	
9	Sunny	Cool	Normal	Weak	Yes	
11	Sunny	Mild	Normal	Strong	Yes	
DECISION TREES	DECISION TREES CS446 Spring'17					

Missing Values

- Diagnosis = < fever, blood_pressure,..., blood_test=?,...>
- Many times values are not available for all attributes during training or testing (e.g., medical diagnosis)
- Training: evaluate Gain(S,a) where in some of the examples a value for a is not given
- Testing: classify an example without knowing the value of a

additional ssues

Missing Values

Outlook = Sunny, Temp = Hot, Humidity = ???, Wind = Strong, label = ?? Normal/High_

Outlook = ???, Temp = Hot, Humidity = Normal, Wind = Strong, label = ??

CS446 Spring'17

Other Issues

- Attributes with different costs
 - Change information gain so that low cost attribute are preferred
 - Dealing with features with different # of values
- Alternative measures for selecting attributes
 - When different attributes have different number of values information gain tends to prefer those with many values
- Oblique Decision Trees
 - Decisions are not axis-parallel
- Incremental Decision Trees induction
 - □ Update an existing decision tree to account for new examples incrementally (Maintain consistency?)

Other Issue

Decision Trees as Features

- Rather than using decision trees to represent the target function it is becoming common to use small decision trees as features
- When learning over a large number of features, learning decision trees is difficult and the resulting tree may be very large
 - → (over fitting)
- Instead, learn small decision trees, with limited depth.
- Treat them as "experts"; they are correct, but only on a small region in the domain. (what DTs to learn? same every time?)
- Then, learn another function, typically a linear function, over these as features.
- Boosting (but also other linear learners) are used on top of the small decision trees. (Either Boolean, or real valued features)

Leature

Experimental Machine Learning

- Machine Learning is an Experimental Field and we will spend some time (in Problem sets) learning how to run experiments and evaluate results
 - ☐ First hint: be organized; write scripts
- **Basics:**
 - □ Split your data into two (or three) sets:
 - Training data (often 70-90%)
 - Test data (often 10-20%)
 - Development data (10-20%)
- You need to report performance on test data, but you are not allowed to look at it.
 - You are allowed to look at the development data (and use it to tweak parameters)

N-fold cross validation

Instead of a single test-training split:

train

test

Split data into N equal-sized parts

- Train and test N different classifiers
- Report average accuracy and standard deviation of the accuracy

Evaluation: significance tests

- You have two different classifiers, A and B
- You train and test them on the same data set using Nfold cross-validation
- For the n-th fold:

```
accuracy(A, n), accuracy(B, n)
p<sub>n</sub> = accuracy(A, n) - accuracy(B, n)
```

■ Is the difference between A and B's accuracies significant?

Hypothesis testing

- You want to show that hypothesis H is true, based on your data
 - □ (e.g. H = "classifier A and B are different")
- Define a null hypothesis H₀
 - \Box (H₀ is the contrary of what you want to show)
- \blacksquare H₀ defines a distribution P(m /H₀) over some statistic
 - e.g. a distribution over the difference in accuracy between A and B
- Can you refute (reject) H_0 ?

Rejecting H₀

- \blacksquare H₀ defines a distribution P(M /H₀) over some statistic M
 - □ (e.g. *M*= the difference in accuracy between A and B)
- Select a significance value S
 - □ (e.g. 0.05, 0.01, etc.)
 - □ You can only reject H0 if $P(m | H_0) \le S$
- Compute the test statistic m from your data
 - e.g. the average difference in accuracy over your N folds
- Compute $P(m / H_0)$
- Refute H_0 with $p \le S$ if $P(m / H_0) \le S$

Paired t-test

- Null hypothesis (H_0 ; to be refuted):
 - ☐ There is no difference between A and B, i.e. the expected accuracies of A and B are the same
- That is, the expected difference (over all possible data sets) between their accuracies is 0:

$$H_0: E[p_D] = 0$$

- We don't know the true $E[\rho_D]$
- N-fold cross-validation gives us N samples of p_D

Paired t-test

- Null hypothesis H_0 : $E[diff_D] = \mu = 0$
- \blacksquare m: our estimate of μ based on N samples of $diff_D$

$$m = 1/N \sum_{n} diff_{n}$$

The estimated variance S²:

$$S^2 = 1/(N-1) \sum_{1,N} (diff_n - m)^2$$

Accept Null hypothesis at significance level a if the following statistic lies in $(-t_{a/2, N-1}, +t_{a/2, N-1})$

$$\frac{\sqrt{N}m}{S} \sim t_{N-1}$$

Decision Trees - Summary

- Hypothesis Space:
 - Variable size (contains all functions)
 - Deterministic; Discrete and Continuous attributes
- Search Algorithm
 - □ ID3 batch
 - Extensions: missing values
- Issues:
 - What is the goal?
 - When to stop? How to guarantee good generalization?
- Did not address:
 - How are we doing? (Correctness-wise, Complexity-wise)