Mathematical Logic Series of tutorials N°03 : Propositional logic

Exercise 1

1. Let A be the following proposition : « All men are bearded ». Check the correct formulations of proposition $\neg A$.

 \square « Not all men are bearded.»

- \square « No man is bearded.»
- \square « There exists a man who is not bearded.»
- $\hfill\square$ $\hfill \hfill \hfi$

□ « There is only one man who is not bearded.»

2. Here is a list of simple propositions A and B, the truth values of which you know. In each case, express the truth value of proposition $A \wedge B$.

T F

 \Box \Box A : « Paris is the capital of France.» and B : « 1+1 = 2».

 \Box \Box A : « A cat has five legs.» and B : « A square has four sides.».

 \Box \Box A : « A right-angled triangle has a right angle.» and B : « Two parallel lines intersect at a point.».

 \Box \Box A : « 3 * 8 = 32» and B : « Paris is the capital of France».

 \Box \Box A : « Berlin is the capital of Spain.» and B : « A right-angled triangle has three equal sides.».

 $\Box \quad \Box \quad A: « A fly can fly.» and <math display="inline">B: «$ Canada is a country in the North American continent.».

3. Here is a list of simple propositions A and B, the truth values of which you know. In each case, express the truth value of proposition $A \vee B$.

T F

 \Box \Box A : « Paris is the capital of France.» and B : « 1+1 = 2».

 \Box \Box A : « A cat has five legs.» and B : « A square has four sides.».

 \Box \Box A : « A right-angled triangle has a right angle.» and B : «Two parallel lines intersect at a point.».

 \Box \Box A : « 3 * 8 = 32» and B : « Paris is the capital of France.».

 $\Box \quad \Box \quad A: \ll Berlin is the capital of Spain.» and <math display="inline">B: \ll A$ right-angled triangle has three equal sides.».

 $\Box \quad \Box \quad A: «A fly can fly.» and <math display="inline">B: «$ Canada is a country in the North American continent.».

Exercise 2 Are the following expressions a well-formed formulas? 1. $p \land \neg q$, 2. $p \lor \lor r$, 3. $(p \lor (\neg p))$, 4. $(p \lor \neg p)$.

Exercise 3 Give the truth tables for the following formulas, and indicate the equivalences between these formulas.

1. $\neg (p \land q)$, 2. $\neg p \lor \neg q$, 3. $\neg (p \lor q)$, 4. $\neg p \land \neg q$, 5. $p \lor (p \land q)$, 6. $p \land (p \lor q)$, 7. p

Exercise 4 Let p and q be two propositional variables denoting respectively« 'It is cold » and « 'It is raining ». Write a simple sentence corresponding to each of the following statements :

1. ¬p, 2. $p \land q$, 3. $p \lor q$, 4. $q \lor \neg p$, 5. ¬ $p \land \neg q$, 6. ¬¬q

Exercise 5 transform the following sentences into propositional logic formulas by specifying the universe of the discourse :

- 1. This engine is not noisy, but it consumes a lot.
- 2. it is not true that Peter will come if Mary or John come.
- 3. John is not only stupid, but he is also evil.
- 4. I go to the beach or to the cinema on foot or by car.
- 5. Peter has no brothers or sisters, but he has a cousin.
- 6. If it's raining and sunny then there's a rainbow.
- 7. John will only go to the cinema if he has finished his homework.

Exercise 6 Enigma : Three colleagues, Ahmed, Ali, and Mostafa, have lunch together every working day. The following statements are true :

- 1. If Ahmed orders a dessert, Ali orders one to,
- 2. Every day, either Mostafa or Ali, but not both, orders a dessert,
- 3. Every day, either Ahmed or Mostafa, or both, order a dessert,
- 4. If Mostafa orders a dessert, Ahmed does the same.

Questions :

- 1. Express the data of the problem as propositional formulas.
- 2. What can be deduced about who orders a dessert?
- 3. Can we reach the same conclusion by removing one of the four statements?

Exercise 7 Sheffer's connector is defined, denoted as | (Sheffer bar) which is the NAND by $p \mid q \equiv \neg(p \land q)$.

- 1. Give the truth table for the formula $(p \mid q)$.
- 2. Give the truth table for the formula ((p | q)|(p | q)).
- 3. Express the connectors \neg , \lor and \rightarrow by using the Sheffer bar.

Exercise 8 Establish the truth tables for the following formulas and determine if they are valid, satisfiable, or unsatisfiable.

a. $(\neg P \land \neg Q) \rightarrow (\neg P \lor R)$ b. $P \land (Q \rightarrow P) \rightarrow P$ c. $(P \lor Q) \land \neg P \land \neg Q$ d. $(P \rightarrow Q) \land (Q \lor R) \land P$ e. $((P \lor Q) \rightarrow R) \leftrightarrow P$ **Exercise 9** Find the disjunctive normal forms : a. $(A \lor B \lor C) \land (C \lor \neg A)$ b. $(A \lor B) \land (C \lor D)$ c. $\neg((A \lor B) \to C)$

Exercise 10 Find the conjunctive normal forms : a. $(A \lor B) \to (C \land D)$ b. $(A \lor (\neg B \land (C \lor (\neg D \land E))))$ c. $A \leftrightarrow (B \land \neg C)$

Exercise 11 Prove that the following formulas are theorems : a. $\vdash A \leftrightarrow A$, Knowing that $A \rightarrow A$ should not be taken as an axiom. b. $\vdash \neg B \rightarrow (B \rightarrow A)$

Exercise 12 Establish the following deductions :

a. $A \to (B \to C), A \land B \vdash C$ b. $A \to (B \to C), B \vdash A \to C$ c. $A, B \land C, A \land C \to E \vdash E$ d. $E, E \to (A \land D), D \lor F \to G \vdash G$ The axioms of propositional logic are :

1a. $(A \to (B \to A))$ - 1b. $(A \to B) \to ((A \to (B \to C)) \to (A \to C))$ - 1c. $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$ - 1d. $(A \to B) \to ((B \to C) \to (A \to C))$ - 2. $A \to (B \to A \land B)$ - 3a. $A \land B \to A$ - 3b. $A \land B \to B$ - 4a. $A \to A \lor B$ - 4b. $B \to A \lor B$ - 5. $(A \to C) \to ((B \to C) \to (A \lor B \to C))$ - 6. $B \to ((B \to C) \to C)$ - 7. $A \to A$ - 8. $(\neg A \to B) \to (B \to A)$ - 9. $(A \to B) \to (B \to A) \to (A \leftrightarrow B))$

$$- \mathbf{8.} (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$$

$$- \mathbf{9.} (A \rightarrow B) \rightarrow ((B \rightarrow A) \rightarrow (A \leftrightarrow B))$$